
DTI

OF S

.1*

VALIDATION OF AN EXPONENTIALLY

DECREASING FAILURE RATE SOFTWARE

RELIABILITY MODEL

THESIS

Charles J. Westgate, I
Captain, USAF

DorJ.7loN 9TAjk7:m7?T A

Apyoved tr nL Cf w!eam0

Dis twu non Uni~rted
DTPRTMNTOF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

89 12 19 023

AFIT/GLM/LSY/89S-71

DTICS ELFCT F. *,

DEC 20 1900 :

VALIDATION OF AN EXPONENTIALLY

DECREASING FAILURE RATE SOFTWARE

RELIABILITY MODEL

THESIS

Charles J. Westgate, III
Captain, USAF

AFIT/GLM/LSY/89S-71

Approved for public release; distribution unlimited

The contents of the document are technically accurate, and no
sensitive items, detrimental ideas, or deleterious information is
contained therein. Furthermore, the views expressed in the
document are those of the author and do not necessarily reflect
the views of the School of Systems and Logistics, the Air
University, the United States Air Force, or the Department of
Defense.

Acce;o) Fo,

0.j o" .-d J

J) I ,bI t, "

!.ld' -b y (,odes

A.~ ,) I
Dist

r\-i _

AFIT/GLM/LSY/89S-71

VALIDATION OF AN EXPONENTIALLY

DECREASING FAILURE RATE

SOFTWARE RELIABILITY MODEL

THESIS

Presented to the Faculty of the School of Systems and

Logistics of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Logistics Management

Charles J. Westgate, III, B.S., M.S.

Captain, USAF

September 1989

Approved for public release; distribution unlimited

Preface

The purpose of this study was to determine the degree of

validity of the Air Force Operational Test and Evaluation

(AFOTEC) Software Reliability Estimation Model. The results

of my research should help AFOTEC, the Air Force and all

partieE involved in buying or developing software. My intent

in performing this research was to provide a tool that would

be easy to use and have the degree of accuracy needed to make

this model a valid tool.

In performing this research, I received assistance from

several others. Without this help, I feel this document that

you are now reading would not have been possible. First, I

wish to thank Prof. Dan Ferens for his guidance and technical

expertise. My wholehearted thanks to Lt Col Bruce Christensen

for assistance in the area of statistics and to Capt Mike

McPherson for the failure data and his knowledge of the AFOTEC

Model. I must also express my appreciation to Dr. C. R. Fenno

for his assistance in the grammar and format of this document.

Most of all, 1 wish to thank my wife Barbara and daughter Beth

for their patience and understanding throughout these last

fifteen months.

Charles J. Westgate, III

ii

Table -of Contents

Page

Preface...........................ii

List of Figures........................v

List of Tables......................vii

Abstract.........................viii

I. Introduction.......................

Overview......................1
Definitions........................I
Background.....................2
General Issue....................8
Research Question..................9
Research Objectives 10
Justification....................10
Scope and Limitations................11
Summary......................11

II. Literature Review...................12

Introduction....................12
Scope........................12
General Model Types.....................12
Current Software Reliability Models. 14
Fault Tolerance..................22
Application and Guidance..............26
Validation Methods................27
Conclusions.....................29

III. Methodology......................31

Introduction....................31
Model Feasibility.................31
Model Validation..................32
Model Assumptions.................35
Summary....................... 36

IV. Findings and Analysis.................37

Introduction....................37
Model Feasibility.................37
Model Validation.................38

iii

Model Assumptions 45

Summary and Conclusions 46

V. Conclusions and Recommendations 48

Introduction 48
Conclusions 48
Recommendations 50
Summary 53

Appendix A: Analysis of Model A 54

Appendix B: Analysis of Model B 59

ATndix C: AFOTEC Paper 62

Appendix D: List of Acronyms and Symbols 77

Appendix E: Graphs and Data Plots 79

Appendix F: Research Data Sets 91

Bibliography 102

VITA 105

iv

List of Figures

Figure Page

I. Growth in Military Aircraft Software
Requirements 3

2. Growth in Software Demand for Space Systems . . 4

3. Hardware and Software Cost Trend 5

4. Software Maintenance Cost Trend 6

5. Software Life Cycle Cost per Phase 7

6. Fix Cost per Error per Phase 8

7. AFOTEC Model of Software Faults 20

8. S-Shaped Software Fault Model 20

9. Trend in Software Personnel 25

10. Model Versus Actual for AFOTEC Model 40

11. Model Versus Actual for Model A 55

12. Model versus Actual for APOTEC Model
(Data Set 01) 79

13. Model versus Actual for AFOTEC Model
(Data Set 02) 80

14. Model versus Actual for AFOTEC Model
(Data Set #3) 81

15. Model versus Actual for AFOTEC Model
(Data Set #4) 82

16. Model versus Actual for APOTEC Model
(Data Set #5) 83

17. Model versus Actual for AFOTEC Model
(Data Set #6) 84

18. Model versus Actual for Model A
(Data Set #1) 85

19. Model versus Actual for Model A
(Data Set #2) 86

v

20. Model versus Actual for Model A
(Data Set #3)...................87

21. Model versus Actual for Model A
(Data Set #4)...................88

22. Model versus Actual for Model A
(Data Set #5)...................89

23. Model versus Actual for Model A
(Data Set #6)...................90

vi

List of Tables

Table Page

I. DOD Severity Codes 19

II. Parameter Intervals Analysis for the AFOTEC
Model 41

III. Coefficient of Determination Analysis for the
APOTEC Model 43

IV. Residual Analysis for the APOTEC Model 44

V. Analysis of Predictions for the AFOTEC Model 45

VI. Parameter Interval Analysis for Model A 56

VII. Coefficient of Determination Analysis for
Model A 56

VIII. Residual Analysis for Model A 57

IX. Analysis of Predictions for Model A 58

vii

AFIT/GLM/LSY/89S-71
Abstract

The purpose of this thesis was to determine the validity

of a software reliability estimation model proposed by the

Air Force Operational Test and Evaluation Center (AFOTEC).

During the last forty years of the computer era, the demand

for software has been growing at a rate of twelve percent per

year: and about f:lty percent of the total life cycle cost of

a software system is attributed to software maintenance. It

has also been shown that the cost of fixing a software fault

increases dramatically as the life cycle progresses. It was

statistics like those discussec above that prompted this

research.

The research had these specific objectives: the first was

ascertaining the soundness of the model's intrinsic logic.

The second objective was to run the model with actual failure

data to measure the validity and correlation of the data with

the model. The final objective was to determine the

assumptions required to operate the model.

The study found the AFOTEC Model to be invalid; however,

improvements and assumpt; ns could be easily applied to make

the model a valid tool for estimating software reliability.

Two improvements were proposed for the AFOTEC Model. First.

the model should operate with the assumption that the data

used in the model should be data obtained after softwate

viii

testing has reached a steady state. The second recommendatlon

was to modify the AFOTEC Model to emulate both the start-up

phase and the steady state phase of testing.

ix

VALIDATION OF AN EXPONENTIALLY DECREASING FAILURE
RATE SOFTWARE RELIABILITY MODEL

I. Introduction

Overview

This chapter discusses the evolution of military weapon

systems, and the growing role that software has in these

systems. By addressing these issues, the need for reliable

software will be revealed. The justification for the research

has also been presented, and finally, the specific objectives,

assumptions, and scope of the research has been established.

Definitions

The term reliability refers to the probability that a

system will not fail within a given amount of time, and

failure rate refers to the rate at which failures occur in a

system at a specified time (24:80-84). For the purposes of

this research, software reliability will be defined as "the

probability of failure-free operation of a computer program

for a specified time" (32:15). The software failure rate is

defined as the rate at which software bugs or faults are

discovered and is expressed as the number of failures per time

(32:15-16). Finally, the term mean time between failures

(MTBF) is the average time expected before the next fault is

detected. The MTBF can also be mathematically defined as the

inverse of the failure rate (24:80-84). The terms

reliability, mean time between failure (MTBF) and failure rate

will be used as measures of software reliability.

Background

Throughout history, men have used mechanical/hardware

weapon systems. From the first time that a prehistoric man

used a rock as a weapon, we have been using hardware systems.

However, it has been within the last 43 years that computers

and software have come into existence (20:126), and only the

last 37 years that computers have been commercially available

(30:54). Thus, there has been much more research and

knowledge in the topic of hardware and hardware reliability

than in the area of software and software reliability.

The use of computers and software is increasing rapidly,

however (26:41). For example, the first computer, the ENIAC,

was built about 40 years ago and it was only capable of

performing simple arithmetic functions at a speed of about 2.8

milliseconds (30:35). This computer weighed 30 tons (30:34)

and occupied a space 100 feet long, 10 feet high and 3 feet

deep (20:126). Today, a calculator can perform over 100

mathematical operations and can fit in the palm of a hand.

Another example. the software in the B-lB Bomber performs

up to one million calculations per second to keep the aircraft

2

flying (6:18), which is about one thousand times faster than

the ENIAC computer. An example of the growing demand for

software in military aircraft is shown in Figure 1.

4000 A E-3A
AAIR FORCE

o o NAVY1000

S00 0 F-18X

0 0 P-3C

S300AD B-1 / / F-1 5 W/
RADAR RSP

0 E-3A 0
200 A F-16

O B-52 OAS
P-3C E2C UPDATE

100 C-SA A F-iS
19 1FB-111-1 5

0 EF-111

1965 1970 1975 1980

Reprinted from (26:42)

Figure 1: Growth in Military Aircraft
Software Requirements

This figure illustrates how the amount of software,

measured in the number of lines of code, has increased in

United States aircraft throughout the years. A similar

example for space systems is shown in Figure 2.

3

Space
40 -Shuttle

Z 0 -2 "

.0

Apollo-Skylab
10

Gemini
Mercury

SI -A-----

1960 1965 1970 1975 190

Reprinted from (5:643)

Figure 2: Growth in Software Demand
for Space Systems

Figure 3 represents the increase in software versus

hardware in Air Force systems, measured as a percent of the

total system cost. At this rate of growth, the Air Force

cannot afford to overlook software (26:44).

Reliability has also grown in importance in the last few

years, as the Air Force's Reliability and Maintainability

Project, R & M 2000, demonstrates (10:1). By making systems

more reliable, the systems should, by definition, fail less

often; hence, less money should be spent maintaining these

systems (31:15). In light of current budget cuts and the

Graham-Rudman-Hollings Act, the Air Force has been required

4

to operate the same systems, but with a smaller budget

(31:12).

80
so- Hardware

60

40

0

1955 1970 1985

Year

Reprinted from (35:11)

Figure 3: Hardware and Software
Cost Trend

Historically, about sixty percent of the total dollars

spent on a weapon system is used for operating and maintaining

the system (4); and, as shown in Figure 4, the cost of

software maintenance is increasing as a percent of total

system cost.

According to Halpin, 20 to 25 percent of all system

failures are due to software faults (21:5.1). Glass states

that 50 percent of the software life cycle cost is spent on

software maintenance (Figure 5). Glass also claims, as showt

in Figure 6, the cost to correct a software fault "increases

dramatically as the software progresses through the life

cycle" (18:11),

5

0

Hardwre

i Oe0mlopment

- 60

40

C

20-Maneac

0
1955 1970 1985

Year

Reprinted from (5:18)

Figure 4: Software Maintenance
Cost Trend

Since the demand for software has been shown to be rapidly

increasing along with the cost of maintaining software, money

could be saved if software was produced reliably during the

development phase. Hence, more reliable systems would help

to cut costs. The cost savings is one of the reasons that the

Air Force instituted the Reliability and Maintainability (R&M)

2000 Program (10:1).

Although the Air Force implemented R&M 2000 to cover both

hardware and software, it does not provide much guidance on

how to handle software reliability. The R&M 2000 Program Plan

provides guidance on how reliability and maintainability

6

programs should be developed and managed; however, the

document does not mention how software reliability should be

handled (25:356).

Raintenan e~(50%)

Requirements

Spifiction Checkout
(10%) (20\ hk)

Design

Reprinted from (18:8)

Figure 5: Software Life Cycle
Cost per Phase

The only guidance given by the Air Force can be found in

Air Force Regulation (APR) 800-18, which only directs:

"Integrate the development of reliable software into the

overall system development and acquisition program" (9:3).

No other information or direction is given on how to develop

reliable software or how to measure the reliability. In fact,

a military standard directs that, when calculating system

7

reliability, the software reliability should be assumed to be

completely reliable (11:100-3). Thus, it is important to

research the area of measuring the reliability of software and

the techniques of developing reliable software.

Reprinted from (18:11)

Figure 6: Fix Cost per Error
per Phase

General Issue

The general question examined in this thesis was how to

improve the reliability of the software that accounts for a

major portion of the United States Air Force's weapon systems.

The answer to this question will not only increase the

reliability of the software or computer program in these

8

weapon systems, but will also improve the reliability of the

entire system.

Research Question

In order to improve the reliability of software, a method

should first be developed to measure the reliability. This

measurement is required to determine if a technique for

improving reliability has in fact made an improvement. After

a system of measurement has been developed, proposed

reliability improvement techniques can be compared using the

measurement system. The comparisons can be used to judge

which improvement technique will, in fact, result in

improvements; and which techniques will provide the best

results. For example, a reliability model could be used to

compare various software fault tolerance techniques.

The research question that has been anSwGLed in this thesis

is how to quantitatively measure the reliability of software.

To answer this question, it was first necessary to decide if

a new model should be developed and validated to measure

software reliability or if an existing model could be chosen

to be validated. After researching the current literature on

the topic of software reliability and contacting organizations

that have ongoing research in the area, it was determined that

several models are already in existence. Hence, it was

decided to choose an existing model. Therefore, the specific

research question is: What is the validity of the software

9

reliability model that has been developed by the Air Force

Operational Test and Evaluation Center (AFOTEC) to measure the

reliability of software during the operational test and

evaluation (OT&E) phase of a development program?

Research Objectives

To determine if the AFOTEC Model is valid, three objectives

had to be met. The first objective was to ascertain if the

theory behind the model is sound and, if so, to what extent.

The second objective was to run the model with existing data

to evaluate how well it predicted reliability. The final

objective was to conclude under what assumptions the model was

valid and to comment on the applicability of the model during

othet phases of the development cycle.

Justification

Since the model chosen to be validated was developed by the

Air Force Operational Test and Evaluation Center, they have

sponsored this research realizing that the findings could help

standardize the way in which both AFOTEC and the Air Force

define and measure software reliability (22). The results of

this research can also be applied to Air Force acquisition

contracts as a method of determining the degree to which the

system under contract meets a given reliability requirement

in the specification, and to determine if the software meets

the reliability requirements of the operational commands.

10

Scope and Limitations

The scope of this research is limited to the validation of

the AFOTEC Model during the operational test and evaluation

phase; however, generalizations will be made as to the model's

validity during other phases of the acquisition cycle.

Another limitation to this research is in the use of available

data. Enough time is not available to develop software and

collect a primary source of data; therefore, the analysis has

been limited to the use of secondary or already existing

databases. This data has been obtained from Rome Air

Development Center (RADC), AFOTEC, and the Aeronautical

Systems Division (ASD) Information Center (INFOCEN).

Summary

This chapter discussed the importance of reliable software

and how it can affect the maintenance and budgetary

requirements of the Air Force. It has also been pointed out

that before developing reliable software, a method for

measuring software reliability should first be developed.

Chapter II contains a summary of the current literature and

research in the areas of software reliability, fault tolerance

and reliability improvement techniques, current Air Force

guidance, and statistical model validation techniques.

11

II. Literature Review

Introduction

This chapter is a review of literature that deals with the

topics of reliability and fault tolerance of software. It

also covers current Air Force guidance for managing software

reliability and techniques of validating statistical models.

Scope

The literature search was limited to the last fifteen years

because, according to Dunham, research in the area of software

reliability did not begin until 1972 (15:111). The search

concentrated on military applications, although it was not

confined to this area. Literature searches were performed

through the National Aeronautics and Space Administration

(NASA), Defense Technical Information Center (DTIC), DIALOG,

and RADC literary databases.

General Model Types

Currently, several types of models exist that are capable

of estimating the reliability of software or counting the

number of errors in a program. The five general types of

models are mean time between failure, error counting, error

seeding, metrics, and input domain (16:1-6). However, they

are not all useful for all stages in the software life cycle,

and they have not been proven to be valid models.

12

Error Countini Models. Error counting models or

exponentially decreasing failure rate models usually assume

a Poisson distribution for the number of errors remaining at

some point in time (16:2). This type of model is useful

during the final stages of software developzuent, such as

integration and test, acceptance test, and operational use

(19:1418-1420). Estimating the input parameters for these

models, however, can be difficult. A typical parameter which

must be estimated is the initial number of errors in the

software; however, error seeding models can estimate this

number.

Error Seeding Models. The error seeding models require a

programmer to insert faults into the software, and then an

independent programmer counts the number of errors that he or

she finds. The model uses a ratio of the number of seeded

errors detected to the number of non-seeded errors. The ratio

is used to estimate the initial number of errors in the

software (16:2). This model can be useful during the unit

test phase or when used to estimate the input parameter of

another model (19:1419).

Mean Time Between Failure Models. The mean time between

failure (MTBF) models are very similar to the error counting

models. The MTBF models calculate the estimated time until

the next error will be detected, as compared to the error

counting models tha estimate the number of errors detected

by some point in time (16:3).

13

Metrics Models. Metrics models use qualitative inputs to

a model to obtain quantitative values of the software quality.

Examples of the inputs include complexity of the software,

programming language used, experience of the programmer, and

programming structure. All of these inputs require a

subjective evaluation of parameters that are difficult to

quantify. Bruce Brocka suggests software should not be

evaluated for reliability; rather, it should be measured for

maturity and utility (8:28). The use of a Metrics model is

one such method of measuring maturity and utility.

Input Domain Models. Input domain models operatc on a

ratio principle simiJar to the fault seeding. models. Input

domain models use a set of test cases or input parameters that

are generated to represent the expected operating environment.

The reliability is assumed to be proportional to the ratio of

the number of cases that cause an error to the total numL 2r

of cases generated (19:1416).

Current Software Reliability Models

Currently, there are approximately forty models that have

been developed to estimate software reliability (1:94). The

following section contains a brief description of some of the

more popular models that have been developed to estimate

software reliability.

Schick - Wolverton Linear Model. The Schick - Wolverton

Model is an example of a time between failure model becausp

14

it calculates a failure rate based on the time between the

ith and the (i-l)st failure. This failure rate is expressed

by a Rayleigh distribution and can be expressed by:

h(t i) = K[E O - (i-l)]x i (I)

and the reliability is defined as:

R(t i) = exp[-h(ti)*t/2] (2)

where

K = constant of proportionality
EO = initial number of errors in the program
x i = debugging time between the (i-l)st and ith error

The equations above assume that the time required to remove

faults is negligible and that new faults are not introduced

during debugging (14:118-124).

Jelinski - Moranda Model. This model was developed in

1972, and is another example of a time between failure model

(19:1413). The Jelinski - Moranda Model is similar in form

to the Schick - Wolverton Model; however, the failure rate is

distributed exponentially and is only proportional to the

number of faults remaining at some time. The failure rate is

defined as:

h(t i) = K[E 0 - (i - 1)] (3)

and the reliability is given by:

R(ti) - exp[-h(t.) * ti (4)

The Jelinski - Moranda Model has the same assumptions as

discussed above (14:118-123).

Shooman Model. Shooman's failure count model was also

developed in 1972, and it assumes the failure rate to be

15

proportional to the number of faults per machine language

instruction (35:369). Shooman defines the failure rate to

be:

h(t) = K[(N/I) - n] (5)

where

N = initial number of errors
I = total number of machine language instructions
n = total number of faults corrected by time, t

The two unknowns in the Shooman Model, N and K, must be

determined before this model can be used. A technique known

as moment matching can be used to provide an estimate of these

parameters. Dhillon and Singh's text provides a solution for

these parameters as well as a reference on the moment matching

technique (14:121-122).

Goel - Okumoto Nonhomogeneous Poisson Model. The Goel -

Okumoto Model represents the failure rate as exponentially

decreasing. For this model, the cumulative number of faults

detected by time, t is given by:

M(t) = all - exp(-bt)] (6)

therefore, by taking the derivative, the failure rate is

determined by differentiating equation (6):

M'(t) = ab[exp(-bt)] (7)

where

a = total expected number of software faults
b = fault detection rate per fault
t = cumulative time on test

The "a" and "b" can be estimated by a maximum likelihood

function calculated using sample failure data (19:1415).

16

Musa Execution Time Model. The Musa Model was developed

in 1975 and is another example of a failure counting model.

The model assumes the failure rate to be proportional to the

number of faults remaining in the program after t units of

CPU time. The failure rate is expressed by:

h(t) = Kf(N - n) (8)

where

K = constant of proportionality
N = initial number of faults

n = number of faults corrected by time, t
f = E/I
E = average instruction execution rate
I = number of instructions in the program

Musa's model uses the actual Computer Processing Unit (CPU)

execution time rather than the amount of time on test;

therefore, the estimated reliability should not be

artificially increased due to an increase in testing time

(32:285-288).

APOTEC Model. The following information dealing with the

AFOTEC Model is taken from an unpublished paper by Wiltse,

McPherson and Holmquist of AFOTEC titled "Predicting System

Reliability: Software and Hardware" (27:1-15). A copy or

this document can be found in Appendix C.

The purpose of the APOTEC Model is to provide a practical

method of combining hardware and software reliability data

during Operational Test and Evaluation (OT&E), in order to

estimate the system reliability. Prior to using this model,

APOTEC considered software to be 100% reliable.

17

Although AFOTEC's model was derived from the Goel - Okumoto

Failure Count Model, there are two major differences between

the two models. 'First, the AFOTEC Model uses calendar dates

(day-month-year) rather than execution or testing time. The

use of calendar time has been demonstrated by Musa (32:54-57)

to be a valid method of modeling software faults. Second,

AFOTEC added an imperfect debugging model that represents a

pessimistic bound on the reliability.

When AFOTEC is performing tests on software, they recorJ

the following information for each software fault discovered:

the date fault was discovered, a prcblem number, the affected

computer program configuration item (CPCI), a DOD severity

code (See Table I), a description of the problem, and the date

the fault --as fixed. However, the AFOTEC Software Reliability

Mcdel only uses the date the fault was discovered and the

cumulative number of faults discovered. The APOTEC Model also

limits the data to those faults with an associated DOD

severity code of 1 or 2.

AFOTEC's basic model has the same form as the Goel -

Okumoto Model shown above in equations (6) and (7). This

basic model is used to estimate the "a" and "b" parameters

from the sample failure J-ta. AFOTEC's model operates under

assumption that at the beginning ot testing, faults will be

discovered at fast rate; however, as fewer faults remain, the

slower they will be discovered. Figure 7 shows a graphical

representation of what the model expects.

18

Table I: DOD Severity Codes

Reprinted from (27:6)

Severity
Level Severity Description

1 System Abort. A software of firmware problem that
results in a system abort.

2 System Degraded. A software of firmware problem that
No Work-around. severely degrades the system and no

alternative work-around exists (program
restarts not acceptable).

System Degraded. A software or firmwure problem thet
Work-around. severely degrades the system and there

exists an alternative work-around
(i.e. system rerouting through operator
switchology: no program restarts).

4 Software Problem. An indicated software of firmware problem
System not that does not severely degrade the system
Degraded. or any essential system function.

5 Minor Pault. All other minor deficiencies of non-
functional faults.

Although most models assume the failure rate to be

decreasing (Figure 7), some authors do not always agree.

Yamada and Osaki believe the failure rate could exhibit an S-

shape (Figure 8), thus the failure rate initially increases

and eventually decreases (36:1433). They believe the S-shape

is due to one of two reasons. First, the process of isolating

a fault could cause the initial low failure rate. Second,

failure detection could be dependent on the number of errors

already detected; therefore, the more failures are detected,

then the more undetected failures become detected (36:1433).

19

Adapted from (27:7)

Figure 7: AFOTEC Model of Software Faults

Adapted from (36:1433)

Figure 8: S-Shaped Software

Fault Model

20

McPherson does not agree with Yamada and Osaki, and states

that the S-shaped data could be due to slow testing initially,

or due to systems with higher priorities taking test time from

the system (28).

AFOTEC's Imperfect Debugging Model provides a pessimistic

prediction of the number of software faults based on the

assumption that faults may be introduced into the program

during debugging. This model has the following form:

M(t) = a'[1 - exp(-bt)] (9)

and

M'(t) = a'b [exp(-bt)] (10)

where

M(t) = cumulative number of faults
M'(t) = failure rate

a' = a/B

In this model, the value of B is defined by Musa as 0.96, and

#a" and "b" are the same as defined above.

After the optimistic and pessimistic failure rates have

been calculated using the Basic and Imperfect Debugging

Models, respectively, the software mean time between failures

are estimated by calculating the inverse of the failure rates.

Now, a system MTBF is calculated as follows:

MTBFsy5 1 / { [l/MTBFH + [1/MTBFsw } (11)

where

MTBFsys MTBF of the system
MTBFHW = MTBF of the hardware
MTBFsw = MTBF of the software

21

AFOTEC has also developed a model to estimate reliability

of software programs undergoing major enhancements or

modifications. This model represents the failure rate as

being proportional to the amount of code being modified. This

model, however, will not be studied in this thesis.

Fault Tolerance

Fault tolerance is closely associated with software

reliability. The techniques used in fault tolerance have the

goal of reducing the probability that a software program will

produce incorrect results or will fail. These methods operate

by checking the output of a program or by performing alternate

routines if an error occurs. Hence, the outcome of fault

tolerance is to improve the reliability of the software.

Sabotage and software viruses are growing problems today,

according to Boorman et a1. (7:75-78), and fault tolerance

could also help to reduce these problems.

Several techniques of fault tolerance are currently in use.

These include active and passive redundancy, exception

handling, graceful degradation, factored programming,

structured programming languages, and combinations of any of

the above methods (17:1). The main problem that exists with

using any of the fault tolerance methods is the cost that is

associated with implementing them. A trade-off must be made

between the amount of dollars spent on fault tolerance and the

level of reliability that the user is willing to accept. For

22

example, the manufacturer of video games would not be willing

to spend the same amount on fault tolerance as the developers

of the space shuttle or fighter aircraft.

Active redundancy involves the use of independently coded

versions of the same program. The programs are then run

simultaneously and the outputs are compared. If three or more

versions are used and one version's output does not match the

others, then it is considered to be incorrect. The output

that is given by a majority of the versions is considered to

be the correct answer, and then execution of the program

continues. This technique is also called "N-Version

Programming" (17:2).

Passive redundancy also involves the use of independently

coded versions of the same program; however, in this technique

the computer only executes one version of the program at a

time. The second version is run only if an error is detected

in the first version. This technique is known as the

"Recovery Block Method" (17:3).

According to Ferens, exception handling requires only one

version of a program, and uses subroutines coded into the

program that instruct the program concerning what to do if it

encounters an error (17:3).

Graceful degradation and factored programming are examples

of combinations of the above methods. Graceful degradation

is similar to the recovery block method except that the

alternate versions of the program are simpler and less

23

complex. Therefore, as the program moves to alternate

versions, the chance of encountering an error decreases, but

at the loss of some extra functions (17:4). With factored

programming, according to Ferens, "the overall result is a

weighted sum of the individual program results, with more

weight given to the simpler, more reliable program" (17:4).

The final technique of fault tolerance to be discussed is

structured program languages. Currently, the Department of

Defense (DOD) is working towards developing a standardized

higher order language (HOL) that will be easily understood

and will I ive built-in fault tolerance, and ease of error

detection and debugging. This language, Ada, will be required

in all DOD software development programs. One benefit of

using Ada is to reduce the number of lines of code needed to

write a program. For instance, a program that had 300,000

lines of COBOL code was rewritten using only 30,000 lines of

Ada code (25:360). This illustration shows how developers can

benefit from using Ada.

According to Lipow et al., the United States spent $11

billion on software in 1985 and the author projects that this

cost would more than double by 1990, to $25 billion (25:356).

Figure 9 depicts the demand for software as increasing at a

rate of 12 percent per year; but the availability of personnel

and productivity is only increasing at a rate of 4 percent per

year. Lipow claims that this trend would result in a shortage

of 140,000 programers by 1990 (25:356). At these rates it is

24

apparent that improvements in the area of software development

will be needed; Ada and other fault tolerance methods could

be the answer.

Although fault tolerance seems to have many advantages,

Ferens states that several organizations are still skeptical.

The producers of the Airbus A310 felt that although 2-Version

programming was useful and effective, 3-Version programming

is not. The Airbus personnel believed that extensively

testing a single version would produce the same reliability

as 3-Version programming, but at a lower cost (17:5).

S2.0

2.0 MD%
0

a .S

1.0(4)
0

U. PERSONNEL (4%[YR)

1980 1932 1964 1966 1988 19%

Adapted from (26:43)

Figure 9: Trend in Software Personnel

25

Another example of the skepticism of fault tolerance was

found in the Canadian Government. "A spokesman for the Atomic

Energy of Canada project thought that dissimilar software

would not have been used if the regulations did not require

it; that it was, in effect, [is] counterproductive to software

reliability" (17:6).

Application and Guidance

The next topic examined was current guidance and direction

on the development of reliable software, software reliability

estimates, and fault tolerant software. This research was

used to determine where shortfalls lie in the guidance, and

then recommend that changes, additions or new manuals be

written to reflect the application of the thesis results.

At this time, the Air Force has not given guidance on how

to develop reliable software or how to estimate software

reliability; however, the DOD is conducting seveLal projects

to help solve the problem. Lipow et al. mention several of

these projects, such as Software Technology for Adaptable

Reliable Systems (STARS), the Software Engineering Institute

(SEI), Ada Joint Program Office (AJPO), an Ada Hotline, and

DOD Software Reliability and Maintainability Panel. This DOD

panel is scheduled to publish a manual for software test and

evaluation (25:356).

The Air Force Systems Command (AFSC) published two

pamphlets, one on software quality (2) and one on management

26

indicators (3); however, these documents only give clues that

might indicate poor quality or management of software. Also,

these documents are only pamphlets and not regulations;

therefore, members of APSC are not required to apply the

information given in the documents.

The Department of Defense has only published two directives

for software management (12) and software quality (13). These

directives are a step in the right direction; however, they

only address the management of software development and not

the actual methods required to develop reliable software or

estimate its reliability.

Validation Methods

Currently, the main methods for validating a model are

through the use of statistics and regression techniques.

Regression analysis fits a line, in the form of the model,

through the given data and then uses a correlation coefficient

to measure how closely the data fits this line (33:301-331).

If the correlation is equal to + I, then the data fits the

model exactly. The closer the correlation is to zero, the

less likely the data fits the model (29:213). It is also

generally accepted that the sample size for statistical test

should be at least thirty data points (33:113).

Another method of validating a model is to evaluate the

estimate of the model parameters. Confidence intervals or

statistical tests are usually used to evaluate parameters

27

(33:339-349). When using a statistical test, the data is used

to test the probability of the parameter equaling zero. The

model is assumed to be invalid if the statistical test finds

a probability of the parameter equalling zero. Similarly, if

a confidence interval encloses the number zero, then the model

is assumed to be invalid (33:39-349).

A final method of validating a model is t, evaluate the

residuals or errors in the model. This test can be performed

by calculating the mean and standard deviation of residuals

and using a confidence interval or statistical to determine

if the mean is equal to zero. For the model to be valid, the

mean should have a probability of being zero (33:581-598).

Fur models that are used for predictions, as in the case

of the reliability model, the next step is to determine the

level of confidence in the prediction that the model

generates. This is done with statistical confidence intervals

on the prediction or by evaluating the variation in the error

of the predictions (33:356-362). A confidence interval simply

provides the range of values in which there is a given

probability of this interval enclosing the actual value of

interest (33:126-129).

Another method of validatin,; the predictive capability of

a model is to split the data into to parts. The first part

is used to build a model. The second part is used to compare

with the model's predictions at the respective data points.

The percentage of data required to build thc model should be

28

at least fifty percent, to ensure the most accurate model

possible, yet allowing for remaining data to test the accuracy

of the predictions (33:544). In this thesis, the data was

arbitrarily divided with eighty percent used to validate the

model, and twenty percent used to test the predictive

capability of the model.

Conclusions

The reliability of software is a problem that the United

States Air Force must face. Due to the growth of software in

weapon systems and Air Force dependency on software, it is

important that the software be reliable and dependable. The

Air Force does not have the manpower, dollars, resources or

experience to efficiently maintain all of the software that

will be in its systems. To correct the problem, steps must

be taken to improve software reliability. To do this more

effectively, the Air Force will need a tool for measuring the

reliability of the software.

If methods for measuring software are found to be valid,

improvements can be made using fault tolerance techniques,

and the progress measured using software reliability models.

The military and industry have developed several methods

for estimating reliability and makin3 software fault tolerant;

however, the validity of the methods has not been proven, and

many experts in the field doubt their usefulness. These

methods must be evaluated for applicability, and if they are

29

not proven useful, then new methods must be developed.

Equally important, regulations and guidance must be developed

and published. These documents are needed to give, to those

who are developing and managing software, common direction on

how to use the reliability and fault tolerance tccls that have

been developed.

30

III. .Methodology

Introduction

In general, statistical modeling was used to determine if

the AFOTEC Software Reliability Model was valid and if the

moael can 16 e airallzed fvr other applications. The

literature review in the previous chapter discussed the theory

and intrinsic assumptions of some of the more common software

reliability models, along with methods of assessing the

validity of such models.

This chapter discusses the actual methodology that has been

used in performing the validation of the APOTEC Software

Reliability Model. The discussion has been divided into three

main sections: model feasibility, model validation, and model

assumptions.

Model Feasibility

The first step was to study the modeling of software

reliability that is currently being performed by industry,

academia, and the military. This has been documented in the

preceding chapter as a result of a literature search done

through DTIC literature searches and contacting software

associated organizations and institutes such as the Software

Engineering Institute, the Air Force R&M 2000 program office,

and Rome Air Development Center. This research resulted in

a better understanding of modeling and the nature of software

reliability.

31

Next, the AFOTEC Model was compared to other existing

models, based on the information gathered in the literature

review, to decide if the intrinsic assumptions are sound.

The comparison also identified the relative ease of executing

the model, thus determining if the AFOTEC Model is suitable

for implementation in the Air Force.

Model Validation

The second step was to determine the validity of the model.

This was accomplished by first collecting software reliability

data on several software programs. The data was obtained from

AFOTEC, Rome Air Development Center, and the Aeronautical

Systems Division (ASD) Information Center (INFOCEN) databases.

The data was then examined to determine if it was appropriate,

as required by the model.

Next, the data was divided into two parts. The first

eighty percent of the data was analyzed using the Statistical

Analysis System (SAS) on the Air Force Institute of Technology

(AFIT) main frame VAX computer to determine the correlation

of the data to the model. The remaining twenty percent was

used later to test the predictive nature of the model. The

"PROC NLIN" function of SAS was used to perform a nonlinear

regression of the data (34:575-606). The nonlinear technique

was required because the APOTEC Model is not a linear

equation, nor can it be converted to a linear equation. The

nonlinear regression method used by SAS performs iterative

32

calculations to find the best fit of the data with the model.

Once the best fit is determined, PROC NLIN estimates the model

parameters.

To judge the validity of the model, four tests were

designed. The criteria established for passing the test were

set arbitrarily, as is in mos.' statistical tests. Since most

statistical measures do not present right or wrong, but only

degrees of better or worse, the criteria are set arbitrarily

to achieve a desired accuracy. If more accuracy is required,

future researchers may duplicate the experiment described in

this chapter with tighter test criteria. The first test was

to measure the coefficient of determination (R). The

coefficient of determination is simply the square of the

correlation; hence, it has similar properties. The

coefficient of determination is a measure of goodness of fit,

and a value of 1.0 means a perfect fit and 0.0 indicates the

worse possible fit. According to Kvalseth, the coefficient

of determination is an acceptable method of determining

correlation for a nonlinear equation (23:279-285), and is

calculated by:

R2 = 1 - (SSE/SST) (12)

where

SSE = sum of square residuals
SST = corrected total sum of squares

Both SSE and SST can be found on the SAS printout. Each set

of data tested was required to have a coefficient of

33

determination greater than 0.75 and the average coefficient

greater than 0.85.

The next test was to evaluate the confidence interval on

the parameter estimates, as calculated by SAS. For the model

to be valid, the 95% confidence interval should not encompass

the value of zero. If zero is enclosed by the interval, it

would indicate that there was a probability of the parameter

also being zero. Either parameter equaling zero would

indicate no faults were in the software; however, the data

would indicate otherwise. The 95% confidence interval can be

defined as the interval that has a 95Z probability of the

including the actual value of the parameter.

The third test was to examine the residuals or error in the

model. The residuals are defined by calculating the

difference between the actual data point and the point

estimated by the model. For the model to be valid, the mean

of the residuals is expected to be zero. In other words, on

the average there should be no error in the model. The

criteria set for this test is to have a mean less than + 10

faults. When examining the error, the spread of the

residuals, or standard deviation, is also important. The

standard deviation of residuals is calculated by:

s e = (MSE) 0 "5 (13)

where MSE is the mean squared residual found on the SAS

printout. The standard deviation of residuals will not have

a specific criteria test for validity; rather, the standard

34

deviations will only receive comments on their values as being

high, low, or acceptable.

The last test was to view the shape of the data plot, with

the date being on the independent axis and cumulative number

of faults on the dependent axis. If the graph increases

sharply and then levels off, as shown previously in Figure 7,

then the model may be valid. This is a subjective test;

therefore, the results are not used to prove or disprove the

validity. This test is used primarily to get a first

impression of the expected results. A test of this sort is

often helpful in determining if the results are logical.

The final objective in validating the model was to

determine the validity of its predictive capability. This

assessment was done by comparing the remaining twenty percent

of the data to the values predicted by the model. The

predictions were calculated by SAS at each point respective

to the actual data. The validity was then checked using a

test similar to the residual tests stated above. Again, the

mean residual of the predictions were expected to be within

+ 10 faults, and comments were made on the standard

deviations.

Model Assumptions

The third step was to review the assumptions under which

the model appears to be valid. This was done by first finding

discrepancies in the model, as compared to the actual data.

35

The discrepancies were then studied to help establish what

assumptions must be made in order for the model to remain

valid. Another method used to determine the assumptions was

to evaluate various types and categories of data, such as

aircraft, space, test equipment, and main frame software to

ascertain which applications best fit the model.

The last technique was to return to the literature and

observe what assumptions are typically made in software

reliability models, and which are appropriate t- the AFOTEC

Model.

Summary

The methodology that has been highlighted in this chapter

consists mainly of statistical methods that have been

discussed in Chapter II - Literature Review. The steps

provided in this chapter, along with data provided in Appendix

F, should be sufficient for future researchers to recreate the

experiments performed in this document. This methodology was

used in deriving the results and conclusions found in the

remaining chapters.

36

IV. Findings and Analysis

Introduction

This chapter discusses the results of the research

conducted under the methodology described in Chapter III -

Methodology and presents the information required to answer

the research question posed in Chapter I - Introduction. The

format for this chapter will follow the outline in Chapter III

- Methodology, and the results of each step in the research

methodology will be discussed in detail in each of the

following sections.

In general, the results of the research do not support the

validity of the software reliability model; however, suggested

causes for the invalid finding and recommended improvements

to the model will be discussed in the following chapter and

appendices.

Model Feasibility

The first step in determining the validity of the model was

to determine the feasibility of the model. This was done by

performing a review of literature on the subject of software

reliability models as discussed in Chapter II - Literature

Review. The AFOTEC Model was compared to the existing

theoretical models found in the literature to ascertain if it

is sound and logical.

From the literature, it was apparent that the AFOTEC Model

is similar to the Goel and Okumoto Nonhomogeneous Poisson

37

Model (19:1415) and also has a form similar to the Jelinski

and Moranda (14:118-123), and Schick -Wolverton Models

(14:118-124). The AFOTEC Model also represents a decreasing

failure rate, which is common in most software reliability

models.

The Basic AFOTEC Model has the exact form as the Goel and

Okumoto Model, Equation (6), but has one difference: The

Basic AFOTEC Model uses calendar time rather than execution

or test time. As pointed out in Chapter II, Musa has proven

this to be a valid technique (32:54-57). Thus, it is assumed

that the model can be considered logical and based on sound

theory.

Yodel Validation

To validate the model, data was collected and statistical

measures of the data versus the model were calculated. The

data was collected from APOTEC, Rome Air Development Center,

and the Aeronautical Systems Division INPOCEN; and was then

examined to determine if it was appropriate for use with the

model. The examination included studying data fields included

in the databases, checking for outlier or unreasonable values,

checking for consistency in units, and when possible,

examining the data collection techniques.

Obstacles were encountered in all of the databases except

the AFOTEC database. The major problem with the other

databases was the lack of required data fields. The AFOTEC

38

Software Reliability Model requires data fields on the

calendar date of a software fault, and an associated severity

code for each fault, which were not present in the other data

bases. Another problem encountered was that faults were

recorded by computer central processing unit (CPU) execution

time rather than calendar time.

Some problems were also discovered in the AFOTEC databases.

AFOTEC provided data for eleven systems that it had tested.

These systems included space, aircraft and communications

systems. Since five of the databases had fewer than 30 data

points, only six of the databases could be used for this

research.

A major concern with using the AFOTEC database was to

determine if the data is biased. If the data used to develop

the model was also the data used to validate the model, the

results could be meaningless. Since AFOTEC developed its

model based only on theory, no data was used in developing the

model; therefore, it was ensured that the results would not

be biased.

The next step was to fit the data to the model using the

nonlinear regression methods. The regression techniques

determined a best fit of the data to the model and solved for

the two parameters "a" and "b." Eighty percent of the data

was used in determining the two parameters. Then using the

model, predictions were made and compared with the actual

values of the remaining twenty percent of the data.

39

The validity of the model was analyzed using the output

provided by the SAS nonlinear regression program for all six

sets of data. In particular, the model was evaluated on the

shape of the plotted data, the coefficient of determination

(R2 , the confidence intervals placed on the parameter

estimates, and the an analysis of the residuals.

The most obvious sign indicating the invalidity of the

model was found in the data plots (See Figure 10). The figure

below depicts the S-shaped curve that was discovered for all

six sets of data.

A = Actual
P = Predicted A

DR. A pP
Pa

&A PP
E A For"

D £ PP

A -F
A 1

C Pp

PPP L

ppo

PVIP A

E PP A

D
A

PPP AA

PP L
PP LA

A 0s Acu pr AA
A

Pp A LAU r A
P &AE P "A

P ALA
P A

PP A
PLA A A

TIME

Figure 10: Model Versus Actual for APOTEC Model

40

For the model to be valid, the curve would be expected to

increase sharply at first and then slowly level off, as

depicted in the model curve plotted with the symbol "P." The

possible causes of this S-shaped Curve may be due to several

reasons, as discussed in Chapter II. (Note: graphs of all

sets of data are provided in Appendix E).

The confidence intervals on the "a" and "b" parameters

were also an indicator of the model being invalid. The SAS

output provided a 95% confidence interval on the estimate of

the two parameters, and the results for each data set are

shown in Table II.

Table II: Parameter Intervals Analysis
for the AFOTEC Model

PARAMETER
DATA a b
SET LWRU LOWER
1 -137.47 2137.47 -0.044 UPPER
2 39.02 51.71 12.303 21.909
3 -10296.30 20296.30 -0.244 0.464
4 -3785.74 15785.74 -0.147 0.547
5 119.49 7880.50 -0.007 0.192
6 -2283.09 4283.09 -0.199 0.361

For the model to be valid, it was expected that these

intervals should not include the value zero. In four

instances, the confidence interval on the parameter "a

included zero; and in all cases but one, the interval on b

included zero. Only one set of data passed the test for both

parameters.

41

When the confidence interval of the parameter includes both

positive and negative values, it implies a possibility of the

parameter also being negative. A negative value does not make

sense in the case of the "a" parameter, because it is not

possible to have a negative number of faults in P software

program. Similarly, if "b" were negative, it would suggest

that the cumulative number of faults would eventually become

negative.

The coefficient of determination (R) was the next factor

to be evaluated. The R2 was calculated using the following

equation:

R = 1 - SSE/SST (14)

where

SSE = Sum of Square Residuals
SST = Corrected Total Sum of Squares

Again, the coefficient of determination gives a measure of

how closely the data fits the model, with 1.0 being an exact

match and 0.0 meaning no correlation between the data and the

model. The goal was to have the coefficient of determination

to be greater than 0.75 in all cases, and for the average to

be greater than 0.85.

The results generated from the AFOTEC data are displayed

in Table III. The outcome of the test shows all of the R2's

being greater than 0.75; however, the average is below the

0.85 criteria. Although some of the coefficients of

determination were close to the goal, the fact that the shapes

42

of the curves do not match, as noted above, gives strong

evidence that the model may not be valid.

Table III: Coefficient of Determination
Analysis for the AFOTEC Model

DATA
SET R SQUARED
1 0.808
2 0.944
3 0.782
4 0.876
5 0.813
6 0.769

AVE: 0.832

The last factor used to judge the validity of the model was

the analysis of the error or residuals in the model. For each

set of data, the differences between the actual data points

and the points predicted by the model were calculated. Then,

the mean and the standard deviation of the residuals were

calculated.

The criteria for this test was to have the mean of the

residuals within + 10 faults, and the standard deviation of

residuals should be small. The results of the analysis are

found in Table IV.

The mean of the residuals meets the established criteria

in only three of the six data sets. The large values for the

mean residuals suggest there is also large error associated

with the model. Observing the standard deviations, it is

noted that in all cases, except for data set #2, the standard

43

deviations are judged to be excessively large. A large

standard deviation implies that, in some cases, the model is

making large errors. Even if the mean residual was zero, the

standard deviation may still be large, because a large

positive error could negate an equally large negative error.

Table IV: Residual Analysis for
the AFOTEC Model

DATA RESIDUALS
SET MEAN STD DEV
1 -9.27 42.50
2 -0.53 3.33
3 -41.18 120.26
4 -54.49 120.91
5 -18.41 152.88
6 -5.98 22.59

The next objective was to test the predictive powers of the

model. Table V presents the results of this analysis. From

the table, it is evident that the mean residual for each set

of data is outside or the required + 10 fault range. The

variance in the residuals is also judged to be excessive in

three of the six cases.

Based on the results of the four validity tests and the

test on predictions, the AFOTEC Software Reliability Model

cannot be proven to be a valid software reliability model.

In Chapter V - Conclusions and Recommendations, the

significance of these findings will be discussed; and in

Appendices A and B, two recommended improvements to the AFOTEC

44

Model will be presented and tested for validity using the same

criteria discussed in this chapter.

Table V: Analysis of Predictions
for the AFOTEC Model

DATA RESIDUALS
SET MEAN STD DEV
1 53.34 6.69
2 1.24 4.41
3 104.75 21.15
4 84.88 43.24
5 230.42 33.95
6 18.72 3.43

Model Assumptions

If the model was judged valid, the next step would have

been to determine the assumptions under which the model is

valid. Since the model was not found to be valid, only some

general observations can be noted about the data, rather than

the model.

The first observation deals with the shape of the data.

As noted earlier in the chapter, the data for each case

exhibited an S-shape. Although the data does not plot as

expected by the model; it appears that space, aircraft and

communications systems all act in a similar fashion, as

indicated by the S-shaped graphs.

The S-shaped data may also lead to an assumption that there

are two distinct phases occurring in the testing: a start-up

phase, and a steady state phase. The initial flat portion of

45

| i a !I

data would represent the testing start-up, and the remaining

data would describe the full scale or steady state testing.

However, this assumption can not be proven by the results of

this research.

It was also observed that the effect of using calendar

dates as the independent variable did not change from one set

of data to the next. It could be assumed, therefore, that

during the testing phase, the use of calendar dates is a valid

method of measuring time between software failures. Again,

this assumption should receive further testing to ensure its

validity, because, it is also possible that if actual test

time were used rather than calendar time, the data may not

have taken on the S-shape.

Summary and Conclusions

As discussed in this chapter, the AFOTEC Software

Reliability Estimation Model cannot be considered to be valid

using the given data. The model did not pass any of the test

required for validity; however, in Appendices A and B, the

model is again checked for validity, but under different

assumptions.

Appendix A considers a variation of the AFOTEC Model with

the exclusion of the initial portion of data collected prior

to reaching a steady state testing capacity (Model A). By

omitting the initial data, the model assumes that the system

being tested must already be in the steady state phase. The

46

n ! ! ! ~ ~ - n

results found in Appendix A prove the AFOTEC Model may be

valid under this assumption.

Appendix B considers a piece-wise model (Model B) that

follows the S-shaped pattern of the data. This model could

be useful in demonstrating when a program has advanced past

the initial stages of testing and into a steady state. The

results found in Appendix B verify the validity of the piece-

wise model.

47

V. Conclusions and Recommendations

Introduction

The purpose of this research was to judge the validity of

the AFOTEC Software Reliability Estimation Model. A

statistically based methodology was used to determine how

closely the results predicted by the model corresponded with

the actual sample data. The conclusion drawn from the

analysis performed in Chapter IV suggests that the APOTEC

Model is not valid.

This chapter will discuss possible causes of the for the

invalid finding in Chapter IV and will recommend several

changes that could be made to the model to improve its

applicability and validity.

Conclusions

The general conclusion of this research is that the AFOTEC

Software Reliability Estimation Model is not valid based on

the data used in the validation tests. However, as

demonstrated in Appendices A and B, the model can be

considered to be valid if the initial portion of data is

handled in a different manner.

After seeing the initial results of the validity tests,

Captain Mike McPherson of AFOTEC was questioned about the

testing procedures used at AFOTEC and what reasons might lead

to the data exhibiting the S-shape. Captain McPherson stated

two facts that could help to explain the shape of the data.

48

First, the testing of a system can sometimes be delayed due

to a major program or one with a higher priority. For

example, when the B-lB Bomber was being tested at AFOTEC, it

had a higher priority for the use of the range and testing

facilities than the other systems being tested at that time;

therefore, these other systems were not being tested at the

full capacity (28). When a higher priority system takes test

time from another system, the result is to have fewer faults

found than would have been expected: thus, the plot of the

data would tend to be flatter.

Second, when the testing of a system begins, an initial

start-up period is common (28). The start-up period is the

time between the start of the testing and when the tests are

being performed at 100% capacity. Testing frequently begins

before all required equipment, personnel and parts are

available. The main reason for starting the tests prior to

being fully prepared is to minimize any possible schedule

slips. When a system being tested exhibits a start-up phase,

again, the result is to have fewer faults found initially than

would have been expected if the system was tested at full

capacity. Thus, the result of starting tests early is to have

a flat portion in the data at the beginning of the testing.

Since the shape of the data can be explained, new or

revised models can be developed. The models discussed in

Appendices A and B are two such models. From the outcome of

the validity test conducted on these two models, it has been

49

concluded that these two models may be valid for estimating

software reliability.

Model A operates under the assumption that software testing

must reach a steady state before the model can be used.

Hence, the initial portion of data is discarded, and the model

is uses only the latter portion of data, where a sharp

increase in the number of faults detected is observed.

The results discussed in Appendix A provide evidence that

Model A is a valid method of predicting software reliability.

Only one data set run in Model A failed a validity test; all

others passed.

Model B is similar to Model A, except it attempts to model

both portions of data. The first portion is emulated with an

exponentially increasing model, and the second portion uses

a version of the AFOTEC Model.

In Model B, the first model estimates when the testing will

reach a steady state, and the steady state point is then used

in the second model to estimate reliability. Appendix B

discusses the results of the validity tests performed on Model

B. The conclusion drawn from these results is that Model B

is also a valid method of estimating software reliability.

Recommendations

Recommendations resulting from this research fall into two

categories. The first category deals with recommended

improvements to the AFOTEC Model and suggested applications

50

of the AFOTEC Software Reliability Estimation Model. The

second category deals with suggested areas of further

research.

Improvements and Application. The results of this research

fail to prove the AFOTEC Model to be valid; however,

Appendices A and B represent two possible improvements that

can be made to the model for it to achieve validity. Based

on the ease of use as described above, Model A is recommended

for use by AFOTEC for predicting software reliability, because

it follows the same logic and format as the basic AFOTEC

Model; therefore, the AFOTEC personnel should be familiar with

its operation and assumptions. Although Model B also has a

similar logic in its latter portion, it requires more time and

effort in its operation.

Model A should be easier to tailor for specific

applications. If a testing program has a low priority or

exhibits a start-up phase, the initial data may be discarded

to use the model. Note, however, in the case where no start-

up phase occurs, Model A is equivalent to the AFOTEC Software

Reliability Model.

Although Model B may more accurately represent reality,

Model A is still recommended due to its ease of use. Since

the Air Force is regularly subjected to transient personnel

possessing a wide variety of backgrounds and experience, it

is important to have tools that are easy to learn, teach and

operate.

51

Future Research. The research conducted in this thesis

just begins to expose the "icebeeg" of software reliability.

As mentioned in Chapter I, it is important to all people who

buy, develop, or use software systems that they have reiiable

systems. In general, any area of research dealing with the

topic of software reliability is an important topic that

warrants further study. However, dealing specifically with

the topics discussed in this thesis, there are several areas

recommended for further study.

First, it is important to develop models for estimating the

reliability of software during life cycle phases other than

the testing phase. Models should be designed for both earlier

and later phases in the software life cycle. One particular

area of research could study the AFOTEC Model to determine if

it is valid during other phases of the life cycle.

Another related topic could be to compare various methods

and models to determine which are more accurate or better

suited for use in the Air Force, and during which phases they

are best suited.

A second area is in the development of other improvements

to the AFOTEC Model. Rather than discarding data or having

a piecemeal model, it would be beneficial to have one model

that handles all cases. By having one model, it would not

require the operator to make subjective decisions about -hich

model to use nor would he/she be required to guess which data

should be thrown away. If one model managed both the case of

52

data with and without a start-up phase, the operator could do

his/her job quicker and easier. It is also recommended that

the AFOTEC Model be retested using actual test time data

rather than calendar time.

Third, methods for combining software and hardware

reliabilities into a system reliability should be developed

and validated. For a military service, the goal is to be

prepared for the event of a war and to protect the public.

By having reliable systems, the services would have more

systems available to protect the public, and these systems

would be operating longer. If we have a valid method of

assessing system reliability, the Air Force and other services

would be better and more accurately able to determine this

availability.

Summary

The purpose of this research was to determine the validity

of the AFOTEC Software Reliability Estimation Model. Although

the model was not found to be valid, the theory and logic of

the model is believed to be valid, and several improvements

have been recommended for the model and have been validated.

It is important for all Americans to realize the

significance of software and system reliability in our future.

In this age of rapid growth of software intensive systems,

software will have a critical effect on system reliability.

We must continue to explore the topics of software and system

reliability if we intend to survive in the future.

53

Appendix A: Analysis of Model A

Introduction

This appendix contains the results of the analysis of a

proposed improvement to the AFOTEC Software Reliability Model.

The methodology and tests are the same as described in the

previous chapters.

Description

Model A operates under the assumption that software testing

must be at a steady state before the model can be used.

Hence, the initial portion of the data is discarded, and the

model uses only the latter portion of data, where a sharp

increase in the number of faults detected is observed.

To use Model A, the initial data is discarded until testing

reaches a full capacity or until a sharp increase in the

number of faults detected is observed. Now, the model can be

used just as the AFOTEC Model. The dates are converted into

chronological numbers as the independent variable, and the

cumulative number of faults detected from this point on is

used as the dependent variable.

Next, regressing Equation (9) with the new data, the "a"

and "b" parameters are estimated. Once these parameters have

been determined, they are entered into Equation (10). This

calculation provides an estimate of the mean time between

failures for the software.

54

Results

The first sign of Model A being an improvement over the

AFOTEC Model was found in the graph of the data. Figure 11

presents a graphical view of the data and the models

predictions. Note, Appendix E contains graphs of all data

sets. It is clear that Model A fits the data closer than the

AFOTEC Model, as compared with Figure 10.

A = Actuals
P = Predicted P

p A APPP
AA AAAp

R AAA PP?

AA P?
L PPP

E AFPP

D LA PP

I APPP
APP

Apr

C ApP

T
T PA

E PPLA
PPAD FF A

PPAA
PPA

V FAA
PP A

A PPLA

L r A.A
U PP AA

PPFAA
E PPAAA

FPP LA
P AA

P AAAA.A

-P A
----------- --

TIME

Figure 11: Model Versus Actual for Model A

Next, the confidence intervals on the model parameters were

analyzed. The outcome of the analysis is provided in Table

55

VI. The results show that each set of data, except set #6,

passed the rest for both parameters.

Table VI: Parameter Interval Analysis
for Model A

DATA PARAMETER

SET LOWER UPPER LOWER UPPER
1 176.37 182 3.32 0.013 0.379
2 39.02 51.71 12.303 21.909
3 1475.76 2524.23 0.421 0-794
4 1858.66 10140°33 0.079 0.520
5 710.26 7289.73 0.024 0,375
6 -2445.73 4445.73 -0.355 0,627

The outcome of the coefficient of determination analysis,

displayed in Table VII, show each R 2 being greater than 0.75

and the average greater than 0.85. These statistics show an

improvement over those of the AFOTEC Model, and indicate the

data to have a higher correlation with Model A.

Table VII: Coefficient of Determination
Analysis for Model A

DATA
SET R SQUARED
1 0.884
2 0.944
3 0.973
4 0.984
5 0.956
6 0.766

AVE: 0.918

The residual data from Model A was then evaluated, An

improvement in the mean residuals, as compared to the AFOTEC

56

Model, was found to be as much as 90 percent lower in one

case. The results of the analysis are exhibited in Table

VIII.

Table VIII: Residual Analysis
for Model A

DATA RESIDUALS
SET MEAN STD DEY
1 -6.82 31.49
2 -0.52 3.33
3 -8.30 34.43
4 -1.19 35.58
5 -6.09 38.12
6 3.87 14.62

The outcome of the analysis shows each set of data having

a mean residual less than + 10 faults, and shows a substantial

improvement in the standard deviations. In the case of data

set #5, the improvement resulted in a standard deviation

approximately three times lower than in the AFOTEC Model.

Tne last test was to evaluate the predictive error in the

model. Again, improvements were noted. The data presented

in Table IX, shows only data set #1 failing to meet the

criteria, and the deviations to be slightly better than those

of the AFOTEC Model.

Based on the results of the analysis discussed above, it

was judged that Model A is a definite improvement over the

AFOTEC Model, and that although a few data sets failed test,

Model A appears to be valid.

57

Table IX: Analysis of Predictions
for Model A

DATA RESIDUALS
SET MEAN STD DEV
1 36.36 4.22
2 1.24 4.41
3 -2.23 39.68
4 5.25 18.91
5 -6.89 4.32
6 -5.87 5.67

58

Appendix B: Analysis of Model B

Introduction

This appendix considers a piece-wise model (Model B) that

follows the S-shaped pattern of the data. This model could

be useful in demonstrating when a program has advanced past

the initial stages of testing and into a steady state. The

results found in this appendix verify the validity of the

piece-wise model.

Description

Model B is used by dividing the data into two sets. The

first set of data is regressed against the equation:

Y = exp(c * t) (15)

where

Y = cumulative number of faults
c = a constant representing the fault detection rate
t = time in consecutive days

This first part of the model helps predict when testing will

reach full capacity. The testing is assumed to reach full

capacity at the time, to, when the graph begins to climb

rapidly.

After the testing has reached a steady state, the following

equation is used to model the discovery of software faults:

Y : exp(c * t0) + a' l-exp[-b(t-t])) (16)

where

Y cumulative number of faults
r, a constant representing the fault detection rate

tO the at which the model switches from the start-up
phase to the full scale testing phase

59

a' = a - exp(c * t
b = the fault detection rate for full scale testing
t = time in consecutive days

Before using this second portion of the model, the time to

reach full scale testing (to must be determined from Equation

(15). Now, a nonlinear regression of Equation (16) is

performed to determine the values of a' and b. Finally, an

estimate of the total number of faults can be calculated

using:

a = a' + exp(c * to (17)

and the mean time between fault estimated by Equation (3O).

The independent and dependent variables for this model are

determined similarly to that in Model A.

It should be noted that Equation (16) is the same as the

equation used in Model A, except the model is shifted up by

the amount of faults detected during the start-up phase, and

shifted right by the amount of time elapsed during the start-

up phase. This shifting was not present in Model A, because

the initial portion of data was discarded.

Results

The results of the validity analysis performed on Model B

are approximately the same as the results for Model A.

presented in Appendix A. The similarity in results is due to

the similarities in the two models and the shifting discussed

above. The two models are exactly the same except for this

shifting that occurs in Model B. For example, if a set of

60

data did not have a start-up phase, Equation (16) would

simplify to be equivalent to Equation (9). Model B,

therefore, is also judged to be a valid method of estimating

the reliability of software.

61

Appendix C: APOTEQ Paper

Predicting System Reliability:
Software &nd Hardware

1r. J. Wiltse
Capt N. Ucherson
Capt 9. Holaquist

Abstract - This paper presents a practical method of combining software maturity

data with hardware failure data to predict system reliability. Currently, the

Air Porce Operational Test and Evaluation Center (APOTIC) considers software

to be 100 percent reliable for system reliability projections and therefore,

these projections are based solely on hardware failure data. le propose coupling

the results of a hardware model with the results from a decreasing software failure

rate model with imperfect debugging. Software maturity data gathered during

developmental and operational testing is used as input to the software failure rate

model. The effects from software enhancement; developed during the block release

cycles and fault introduction through error correction are added to give a comprehensive

yet practical measure of software reliability, These factors give the software model a

predictive capability that some models lack. An estimate of the total number of faults in

a software system is determined from the failure rate and a software mean time between

critical failure (NTBCF) is defined.

A review of classic hardware reliability modeling used during the development

and oi itional test phase is presented first. Hardware reliability is discussed

intluding previous treatment of software failure data. This is followed by a

description of methods used to demonstrate and project software reliability. Finally,

a discussion on combining hardware and software reliability model results to derive a

system reliability number is presented. An example reinforces the ideas presented.

62

Predicting System Reliability:
Software and Hardware

by

J. D. Viltse
M. McPherson

1. Holmquist

1. INTRODUCTION

System reliability can be defined in terms of mean time between critical

failure (MTBCP). In specifying a system reliabiliy requirement, the user

states his needs for a mature system. Since the system does not mature for

years after operational test, the mature system reliability required by the

user is predicted from the operational test data. More systems are becoming

software intensive; therefore, the software effects on the overall system

reliability must be considered. The reliability of the software in Department

of Defense (DOD) systems is demonstrated during operational testing but seldom

predicted.

During developmental and operational tests the systems are normally not

mature and the reliability requirements stated are for a mature system.

Therefore the reliability demonstrated during test is used to project the

mature reliability. During each test, all failure data is collected. This

data is then analyzed and each failure is categorized as either critical or

non-critical. We then calculate the mean time between critical failure for the

system using all the critical failures observed during the test. The critical

failures can include both software and hardware failures. A demonstrated MTBCF

is reported based on these failures.

To project the reliability to maturity, defined as initial operational

capability (10C) plus two years, the testers use a reliability growth program

63

specified and funded by the system program office. The reliability growth plan

used varies from program to program. Many use the Duane Growth Model, others

use the Army Materiel Systems Analysis Activity (AMS11) Model, or engineering

analyses. Ihichever model is specified, the data is analyzed to determine if

the model fits the data. In projecting to maturity, all software fsults are

considered fixed. So the projected MTBCF includes only hardware failures. In

reporting the projected MTBCF, the testers report the point estimate, as well

as the confidence limits, for the reliability, if possible.

Current test and evaluation methodologies assume all software faults will be

fixed by system maturity. System reliability is therefore projected solely on

the basis of hardware failures. An erroneous picture of system reliability is

presented to the user and senior decision makers as shown in Figure 1. System

reliability is typically presented as a demonstrated system HTBCF which

includes both hardware and s, tware. For predicting future system reliability,

the software is assumed to be perfect (as shown by the step function Delta 1)

and hardware reliability is then grown to a mature value. This leads to a

misconception that the grown hardware reliability is the system reliability.

If software is properly accounted for in total system reliability, the mature

system MTBCF will be lower (Figure 2) by Delt, 2. The effect that software has

on system reliability has been long overlooked and must be addressed since top

level decision makers are now asking if the system reliability projection

includes the software's contribution.

Presently, there are many methods for predicting software reliability, most

of which fit into the following categories: Time between failure models,

failure count models, fault seeding models, and input domain models. In

developing a model to be used at AFOTIC, practical features from existing

64

CO HARDWARE RELIABILITY (D)EMONSTRATED)

DELTA 1

Q SYSTEM RELIABILITY (DEMONSTRATED)

TIME

DEMONSTRATED MATURE

Figure 1

z JIlt GIL3*"v

DEMONSTRATED MATURE TM

Figure 2

65

|w |Q Ks| 2. |m ! i i I I

models were combined with our maturity method as well as other

constraints.

A BRIEF DISCRIfTION OF SOFTVARE KATURITY

Software maturity is a measure of the software's progress in its evolution

toward meeting user requirements. Several development indicators give insight

about this progress. The rate at which software errors are being discovered

and fixed is the primary indicator of software maturity.

Software changes are made to correct errors in the software design and

programming. Errors result in deficiencies which we will call faults. Each

fault has a unique impact in the system and is categorized by one of five

different DOD standard severity levels with associated weights (Figure 3).

Severity levels range from minor inconveniences to major problems that can

cause system abort. The faults (or changes) are multiplied by their respective

severity weight to produce values called 'change points". The accumulated

change points are tracked over time. Two curves: Originated and Closed are

plotted which illustrate software maturity (Figure 4).

The Originated curve is determined by accumulating the first occurrence of

each change point plotted versus time. The greatest software change rate occurs

early during software testing. As problems are worked out of the software,

this change rate decreases to some steady-state value. The slope of the curve

decreases with time because the rate of discovering errors, and the severity of

those errors, decreases with time.

In addition to plotting software changes over time, we plot a second curve

(called the "Closed" curve) based on software changes implemented or fixed.

This gives an indication of the rate at which software faults are corrected

compared to the rate at which they are being discovered. The faults that have

66

Severity Severity
Level Severity Description Weight (Points)

I System Abort. A software of firmware problem that 30
results in a system abort.

2 System Degraded. A software of firmware problem that 15
No lork-around. severely degrades the system and no

alternative work-around exists (program
restarts not acceptabie).

3 System Degraded. A software of firmware problem that 5
Work-around, severely degrades the system and there

exists an alternative work-around
(i.e. system rerouting through operator
switchology; no program restarts).

4 Software Problem. An indicated software of firmware problem 2
System not that does not severely degrade the system
Degraded. or any essential system function.

5 Minor Fault. All other minor deficiencies of non-
functional faults.

Figure 3

-ORIGINATED

--- CLOSED

z

z

" TIME

Figure 4

67

been corrected are weighted using the same severity scale as the faults that

have been discovered. As the software matures, the gap between the Originated

and Closed curves should narrow (this concept is referred to as 'closure').

The minimum data required for the software maturity metric consists of the

following:

1) Software problem number - a unique identifier used to distingush

one software problem from another.

2) Affected software configuration item - the particular program

where the software problem was discovered.

3) Severity of the problem - a numeric value (1 thru 5) of the impact

the software problem has on the system.

4) Date of initial discovery - the date the software problem was

identified.

5) Date problem was fixed - the date the software problem was closed.

6) Description of problem - short narrative describing the software

problem (needed for traceability between software problems).

To use software maturity data for software reliability, we use only severity

level I and 2 software faults without the weighting factor.

2. MODEL DIVELOPMENT

A model is required to determine the effect of software critical failures

on system reliability assessments. The fact that AFOTEC is an operational test

organization insists that we choose a method that uses actual operational test

data to make a software reliability prediction. Also, we need to choose a

68

method that allows us to relate failure data to calendar time which is a

constraining factor of some models. Also, this methodology must use system

level observables and existing failure reporting systems. Critical failure

data are to be taken from the software maturity data collected during testing.

Historical software maturity data has exhibited an "xponentially decreasing

failure rate process. Reliability assessments for systems containing both

hardware and software must be based upon compatible mathematical foundations and

a consistent set of terms ahich suggests that the chosen must be of an

exponential nature. We emphasize the selection and development of a software

reliability assessment model which is most compatible with hardware reliability

theory and practice.

BASIC MODEL

An exponentially decreasing failure rate process is central to the model me

hve chosen. Based on the above considerations, a description of the software

failure rate prncess as proposed by Goel and Okuuoto was selected as the core

of our model which has the following form:

m(t) : a(l - e bt) (1)

where m(t) is the expected :ccumulated number of critical software faults at

any time t, a is the total number of critical software faults (a constant) in

the system to be observed eventually, and b is the fault detection rate per

fault (also a constant). Musa has demonstrated the validity of using calendar

time in software reliability modeling. We have observed this same failure rate

process across calendar time in APOTEC's software maturity data.

69

This basic model assumes that each fault causes only one failure and is

corrected before causing a second failure. lithout further modification, this

model also assumes that each fault is fixed perfectly (i.e. no new faults are

introduced as a result of fixing a fault) and that there are no faults

introduced whenever it enhancement is made. '.adificat.on to the basic model

which address impertect debugging and errors introduced from enhancements will

be presented.

To use this model in a predictive mode, we curve fit software maturity test

data to equation (1) and obtain the constants a and b. This equation is then

differentiated to obtair the new fault discovery rate to give the following:

dm(t)/dt = abe-bt (z)

Next the time (t) at system maturity is used in the above euation to obtain

the new fault discovery rate at system maturity which is the reciprocal of the

MTBCF for software. This M7BCF can be combined with the hardware M'7BC for an

initial combined system RTBCF (figure 5).

In order to calculate an overall system PITBCF, we first project the

hardware MTBCP to maturity using whichever model has been specified for the

system, and project the software RTBCF using the method descrihed earlier.

The next step is to pic, an arbitrary time period, t, and determine the number

of failures that should occur during the period. To do this use the follo.ing

equations:

Number of hardware failures in time period t = t/MTBCPFW

Number of software failures in time period t = t/MBcr:w

70

CJ3,,o t

* INITIAL COMBINED

Nq- SYSTEM MTBCF

0 SYSTEM

TIME

DEfvNSTRATED MATURE

Figure 5

71

These are combined to give the total number of failures occurring in time

neriod t.

Total number of faiiures = t/MTBCFHB+ t/MTBCF 3

To get the combined system MTBCF, divide the total number of failures into the

time t.

MTBCPSYS = t I
t + t 1 + I

MTBCHw MTBCF S1 MTBCF OV MTBCF SI

The MTBCPsYsis the projected system mean time between critical failure.

IMPERFECT DEBUGGING

To increase the predictive accuracy of this model, we need to eliminate as

many constraining assumptions as possible. The assumption that when fixed a

fault is fixed correctly and no new faults are introduced as a result of fixing

a software fault may be removeJ if we introduce a consideration for imperfect

debugging. The latter of these two is more closely akin to the introduction of

new faults when enhancements are made and will be treated in that paragraph.

The consideration for imperfect debugging describes the effect on software

reliability when a fault is not fixed correctly. In an application of Musa's

method for addressing imperfect debugging the average of the fault

correction/fault detection ratio collected over the life of the test gives an

error reduction factor (B). Musa states 'it appears likely that B may not

vary from project to project" and gives 0.96 as a value. Errors not correctly

fixed are treated as additional errors and therefore an increase in the

72

constant a is necessary. This is done by dividing the constant a by B in

equations (1) and (2) to obtain the constant a' which changes these equations

to the following:

'(t) = a'(1 - e-bt) (3)

and

dm'(t)/dt = a'be -bt (4)

where

a' = a/B

This will give a smaller NTBC? for software and thus for the system.

ENHANCEMBNTS

The assumption that no new faults are introduced as a result of changing or

enhancing the software may be removed by adding a factor to account for

software enhancements as suggested by Hecht. The initial fault content of the

enhanced code is proportional to the fault content of the original code. This

means a straight multiplicative factor may be used in determining the final

fault count (the constant a'').

m"(t) a''(1 - e-bt) (6)

and

dm''(t)/dt = a'be-bt (7)

73

The basic model combined with imperfect debugging and enhancements will give a

final software HTBCF. THis final software RTBCY can be combined with the

hardware MTBCF for a final combined system HTBCF (Figure 6a).

3. DISCUSSION
$

What makes this approach different from previous software reliability

models and methods is the way it is applied and presented to decision makers.

Instead of giving a single reliability number, a confidence interval for system

reliability (including software) is presented. Since the most conservative

estimate of software reliability is derived from the basic model, the value

produced is combined with the hardware r liability to give the upper limit of

the confidence interval. The lower bound of the confidence interval is derived

by combining the value produced by the complete model (including the imperfect

debugging and enhancement effects) rith the hardware reliability projection.

Figure 6b gives a pictorial representation of system reliability showing the

confidence interval provided by including software reliability. Presenting the

data in this manner allows the decision maker to consider software in the

system reliability projection without being held to a specific number. This

estimate of software's contribution to the system reliability projection will

be conservative (i.e. because of the limiting assumptions, the system will have

more software critical failures than predicted by this model). Although this

method does not perfectly present all aspects of software on system

reliability, it does address the more significant contributions of software on

the system reliability.

74

Z ma INITIAL COMBINED
0 SYSTEM MTBCF

NV~-- -0 FINAL COMBINED'

Cc SYSTEM MTBCF

-

*SYSTEM

TIME

DEM'ONSTRATED MATURE

Figure 6a

~CONFIDENCE INTERVAL

TIME

DEMONSTRATED MATURE

Figure 6b

75

4, SUMMARY

Software fault data identified throughout testing is used to assess the

maturity of system software. Software maturity trend data, which is readily

collectable during test, can also be used for software reliability modeling. A

basic decreasing failure rate model coupled with compensation mechanisms for

imperfect debugging and future enhancementg ;s useful for presenting software's

contribution to system reliability. A confidence interval which shows the

range of software's effect on system reliability is an acceptable way of

introducing software into the system reliability projection.

76

Appendix D: List of Acronyms and Symbols

AFIT Air Force Institute of Technology
AFOTEC Air Force Operational Test and Evaluation

Center
AFR Air Force Regulation
AFSC Air Force Systems Command
AJPO Ada Joint Program Office
ASD Aeronautical Systems Division
a Total expected number of software faults
a' a/B

b Fault detection rate per fault
B Musa's constant, 0.96

CPCI Computer Program Configuration Item
CPU Computer Processing Unit

DOD Department of Defense
DTIC Defense Technical Information Center

ENIAC Electronic Numerical Integrator and
Calculator

E Average instruction execution rate
E0 Initial number of errors in the program

f E/I

HOL Higher order language
h(t) Failure rate

I Total number of machine language
instructions

INFOCEN Information Center

K Constant of proportionality

MSE Mean square error
MTBF Mean time between failures
MTBFsyS MTBF of the system
MTBFHW MTBF of the hardware
MTBFsw MTBF of the software

77

M(t) Cumulative number of failures
M'(t) Fault discovery rate

N Initial number of errors
n Total number of faults corrected by time, t
NASA National Aeronautics and Space

Administration

OT&E Operational Test and Evaluation

PROC NLIN Nonlinear regression procedure

R&M Reliability and Maintainability
RADC Rome Air Development Center
R~t) Reliability
R Coefficient of Determination

SAS Statistical Analysis System
SEI Software Engineering Institute
SSE Sum of square errors
SST Total sum of square
STARS Software Technology for Adaptable Reliable

Systems
se Standard deviation of residuals

t Cumulative time on test

xi Debugging time between the (i-l)st and ith
error

78

Appendix E: Graphs and Data Plots

PLOT OF FAIL*TIME SYMBOL USED IS A
PLOT OP YHAT*TIME SYMBOL USED IS P

A
330 + AA

AA
AAA
A

300 + AAA

AA
AA

AA
270 + AA PPP

AA PP
A PPP
A PPP

240 + A PP
A PP

P AAPP
R AP
E 210 + PPP
D PPPAA
I PPP AA
C PP A
T 180 + PP AA
E PP A
D PPP AA

PP AA
V 150 + P A
A PPP AAA
L PP AA
U PP AA
E 120 + PP AA

P P AA
PP AAA

PPP AA A
90 + PP A

P AAA
PPP A AA

PP AA
60 + P AA

P A
PP AA

P AAA
30 + P A

P AA
PP A
PAA A A

0 +P A
+- -..... + -. - - +.. ..-- +.....--_

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

TIME

Figure 12: Model versus Actual for AFOTEC

Model (Data Set #I)

79

PLOT OF PAIL*TIME SYMBOL USED IS A
PLOT OF YHAT*TIME SYMBOL USED IS P

45 +

40 +
A

A
A
A?

35 + A

AP
A
P

A
P 30 + A
R
E AP
D P

C 25 +
T
B P
D

P

V 20 +
A
L A
U PA

E
15 +

10 + A

A

PA

P+A

A

0 +
-4---------+---+-------------------4---

0.0 0.1 0.2 0.3 0.4 0.5

TIME

Figure 13: Model versus Actual for AFOTEC

Model (Data Set #2)

80

PLOT OF IAIL*TIME SYMBOL USED IS A
PLOT OF YHAT*TIME SYMBOL USED IS P

900 +

800 +

A
AAA

AAA

700 + AA
AA

AA
A PP

A PP
P 600 + A PPP
R AA PPP
E A PFP
D A PP
I APP
C 500 + PPA
T PPPAA
E PPP AA
D PPP A

PPP AAA
V 400 + ppp A

A PPP AA

L PPP A
U PP A

E PP A
300 + PP AA

PP AA
PP AA

P AA
PP AA

200 + PP AA
PP A

P AA

P AA
100 + P AAAAAAAA

P AAA
PP A AAAAAAA A

APPAAA
APP

0 +PA
--- + +## ------------ --

0.0 0.2 0.4 0.6 0.8 1,0 1.2

TIME

Figure 14: Model versus Actual for AFOTEC
Model (Data Set #3)

81

PLOT OF FAIL*TIME SYMBOL USED IS A
PLOT OF YHAT*TIME SYMBOL USED Iq P

1100 +

1000 +

A
AA
A

900 + AAA

AA P
AA PPP

AAPP
800 + APP

A AP
P A
R A
E 700 + A
D A PP

I APPP
C PP
T 600 ?AP
E PPPA
D PPAA

PP AA
V 500 + PPP A

A PPP A
L PPP AA
U PPP AA
E 400 + PP AA

PPP A

PP AA
PP AA

35+ PP A

PPP AA
PPe AAA

PP AA
200 + P A

PP A
PPP AAA

PP AAA
100 + P AAAA

PP A AAA
PP AAAAAA
PAAAAA

0 +APA
--- +- +---+---- ---- ------

C.0 O l 0.2 0 3 0.4 0.5 0.b 0.7

TIME

Figure 15: Model versus Actual for AFOTEC

Model (Data Set 44)

82

PLOT OF VAIL*TIME SYMBOL USED IS A
PLOT OF YHAT*TIME SYMBOL USED IS P

1300 +

A
1200 + AA

AA
AA

1100 + AA
AAA

AA
P 1000 + AA

R AA
E A PP
D 900 A PPP
I AA PpP
C A PPPP
T 800 APPP
E AAP
D PPA

700 + PPPAA
v PPPP AA
A PPP AA
L 600 + PPP AA

U PPP AAA
E PPP AAA

500 +PPP AAA
PPP AA

PPP AAAAA

400 + PPP A
PP A

PPP AAA
300 + PPP AAA

AAAAA
AA

200 PP AA
PP A

AA
100 + P A AA

AA
AA

0 PA A A
----- -+---- ---- +----

0.0 0° 1.0 1.5 2.0 2.5

TIME

Figure 16: Model versus Actual for AFOVEC

Model (Data Set 05)

83

PLOT OF FAIL*T.-ME SYMBOL USED IS A
PLOT OF YHAT*TIME SYMBOL USED IS P

180 +

A
160 + AA

AAA
A

140 + AA P
A P
AA P

A PP
AA 'P

P 120 + AA PP
R A PP
E AA P
D A PP
I A PP
c 100 + AAP F
T AP
E PAP
D PPAA

PAA
V 80 + P1, AA

A PAA A
L PPAA
U PP A
E PP AA

60 PPP A
PP A

P A
AA
A

40 + A

AA
A

A

A
20+ P A

AA
AA
A

A AA
0 +AP

---.- - -+-.. .-- .+.-.--- + -----------.- --------

0.0 0.2 0.4 0.6 0.8 1 0 1.2 1.4 1.6 1.8

TIME

Figure 17: Model versus Actua; for AFCTEC
Model (Data Set Ph)

84

PLOT OF PAIL*TIMB SYMBOL USED IS A

PLOT OF YHAT*TIME SYMBOL USED IS P

330 +

300 +

AA
AAA

270 + AA

AAA
AAA
AA P

240 + A PP
AA PPP

P A PP
R AAPP
E 210 + APP

D PAP
I PPPA
C PP AA
T 180 + PP A

E PP A
D PP AA

PP A
V 150 + PP A

A PP AA

L PP AA
U PP AAAA
E 120 + P AA

PP AAA
PP AA

P AA
90 + PPP AA

PP A AA
PP AAA

P AAA
60 + PP AAAA

P PAA
PP A

PPAA
30 + PAA

AP A
A

PA
0 +PA

-- .---

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

TIME

Figure 18: Model versus Actual for

Model A (Data Set #1)

85

PLOT OP IAILTIME SYMBOL USED IS A
PLOT OF YHAT*TIME SYMBOL USED IS P

45 +

40 +
A

A
A
AP

35 + A

AP
A
P

A
P 30 + A
R
E AP
D P
I
C 25 +
T
E P
D

P

V 20 +
A
L A
U PA
E

15 +

P

10 + A
P
A

PA
5 + A

A

0 +
-4------------------------+-------------------+-------------------------------------

0.0 0.1 0.2 0.3 0.4 0.5

TIME

Figure 19: Model versus Actual for

Model A (Data Set #2)

86

PLOT OF PAIL*TIME SYMBOL USED IS A
PLOT OF YHAT*TIME SYMBOL USED IS P

700 + Pp

P AAA
AAAAP

AAAAAPPP

P 600 + AAA P
R AA PPP
B AA PP
D A PP
I AA PP
C 500 + AAPP
T APPP
PAPP
D APP

AAP
V 400 + PA
A PPAA
L PPPA
U PP A
E PPAAAA

300 + PPA

PAA
PP A

PPPAA
P A

200 + PP AA
PP AA

PPPAA
PPAAA

PPPAA
100 + P AA

PPAAA
AAA

P
PAAA

0 +P AA
----------------------- -------------- ----- +-------------

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

TIME

Figure 20: Model versus Actual for

Model A (Data Set #3)

87

PLOT OF PAIL*TIME SYMBOL USED IS A
PLOT OF YHA*TIME SYMBOL USED IS P

800 +
P

PP

PP A
A

700 + PP AAA
PPAA

?eAAA

PP A
AA

P 600 + AA
R A A
B A
D AA
I A
C 500 + A

T A PP
E AA PP
D A PP

AAA PP
V 400 + AA PP
A A PP
L AAPP
U AAP
E APP

300 + AP

AP
PA

PA
PPAA

200 + PPAA
PAA

PPAA
PPAA
PPAA

100 + PP AA
PP AA

PP AAA
PPAAAA

PPAAOAA

0 + A b -
-------------------------- +------------+------------------------

0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42

TIME

Figure 21: Model versus Actual for

Model A (Data Set #4)

88

PLOT OF FAIL*TIME SYMBOL USED IS A
PLOT OF YFAT*TIME SYMBOL USED IS P

R
E
D P
I AP
C 500 4 APPAA
T A APPA
E AAAA P
D AAA PP

AAAA PP
V 400 + AAA PPP
A AA PPP
L AAA PPP
U A PPP
E A APP

300 + AAP P
AAPP

AAPP
PAP

PPPA

200 + PP AA
PP A

PPP AA
PPP AA

PP AA
100 + PPP AAAA

PPP AAA
P A

AAA
AAA

0 +P A
+------------------------------------ ------- +---------------

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0,?

TIME

Figure 22: Model versus Actual for
Model A (Data Set #5)

89

PLOT OF FAiL*TIME SYMBOL USED IS A
PLOT OF YHAT*TIME SYMBOL USED IS P

P
1?(N +

P A
PP A

110 + P

P

P 100 + P AA
R " A AA
E PA
D 90 + PA
I AP
C P
T 80+ A A A
E A A P
D A

70 + A AP
V AA PP
A A P
L 60 + AAPP
U AAPP
E APP

50 + PA

AP
APA

40 + PA

AP
AP

30 + AAP

AA P
AA

20 + AAA P
AA P

:A P
10 +A P

,A PP
,APP

0 +P
-------------------------- +------------------------------+----------

0.0 0.2 0.4 0.6 0.8 1.0

TIME

Figure 23: Model versus Actual for
Model A (Data Set #6)

90

Appendix F: Research Data Sets

The following are data sets used in conducting the research

discussed in this document. The data found below are in the
format: Date(YYYYMMDD), and the next number is the cumulative
number of faults detected by that date.

DATA SET #1 (Space System)

19860424 1 19870317 84 19870828 141
19860514 3 19870324 85 19870831 142
19860530 4 19870327 86 19870902 144
19860606 5 19870407 88 19870908 145
19860715 6 19870408 90 19870909 146
19860905 11 19870409 91 19870914 147
19860915 16 19870413 93 19870916 149
19860916 17 19870420 94 19870917 150
19860922 18 19870429 95 19870920 151
19860930 20 19870430 96 19870921 153
19861014 24 19870503 98 19870922 154
19861016 32 19870505 100 19870924 155
19861023 35 19870527 101 19870925 158
198LI103 38 19870604 102 19870926 159
11361117 39 19870612 103 19870930 161
19861119 42 19870615 104 19871001 163
19861120 43 19870616 105 19871002 164
19861126 44 19870617 106 19871005 165
19861201 45 19870618 107 19871006 167
19861204 47 19870619 108 19871007 168

19861209 50 19870622 110 19871008 169
19861210 51 19870624 111 19871010 170
19861215 56 19870625 114 19871012 171
19861218 58 19870629 116 19871013 172
19861231 59 19870702 117 19871014 174
19870102 60 19870706 119 19871015 175
19870105 64 19870707 122 19871016 177
19870107 65 19870713 123 19871017 179
19870108 66 19870715 126 19871020 183
19870112 70 19870718 127 19871021 185
19870114 71 19870722 128 19871022 187
19870121 72 19870728 130 19871023 190

19870203 74 19870730 131 19871025 191
19870206 75 19870801 132 19871026 192
19870211 76 19870804 133 19871028 195
19870217 77 19870805 134 19871029 196
19870224 78 19870806 136 19871030 197
19870303 79 19870807 138 19871102 199
19870309 80 19870810 139 19871104 200
19870312 82 19870821 140 19871105 201

91

19871107 202 19880309 302
19871109 203 19880315 303
19871110 204 19880317 308
19871111 205 19880320 309

19871112 214 19880322 312
19871113 215 19880323 313

19871114 217 19880325 314

19871115 218 19880329 315

19871116 219 19880331 316

19871117 221 19880404 317

19871118 223 19880406 318
19871120 224 19880408 320
19871122 225 19880409 321
19871125 229 19880413 322
19871128 230 19880418 324
19871130 232 19880419 325
19871207 237 19880421 326
19871208 240 19880425 327

19871209 245 19880426 329
19871211 248 19880428 330
19871212 249 19880503 331

19871214 255 19880504 332

19871215 260 19880506 333
19871216 263 19880511 335

19871217 264 19880513 336
19871221 265
19871222 267
19871224 268
19880104 270
19880108 272
19880109 273
19880114 274
19880115 275
19880117 276
19880125 277
19880126 279
19880129 282
19880202 283
19880203 284
19880204 285
19880205 286
19880208 287
19880210 288
19880211 290
19880215 291
19880217 295
19880222 296
19880227 297
19880229 298

19880301 299
19880307 300
19880308 301

92

DATA SET #2 (Aircraft System)

19870827 2
19870828 4
19870829 5
19870831 6
19870902 8
19870905 10
19870908 17
19870910 18
19870914 28
19870916 30
19870919 31
19870921 33
19870922 34
19870924 37
19870925 38
19880328 40

93

DATA SET #3 (Communications System)

19870129 3 19870901 104 19871204 343
19870130 5 19870910 105 19871207 350
19870202 9 19870911 106 19871208 354
19870203 16 19870916 108 19871209 360
19870204 21 19870918 115 19871210 362
19870205 22 19870923 118 19871211 376
19870206 23 19870924 121 19871214 380
19870209 25 19870925 124 19871215 385
19870210 28 19870928 127 19871216 394

19870216 30 19870929 152 19871217 399
19870217 32 19870930 156 198712i8 404
19870218 33 19871001 159 19871221 412
19870219 38 19871005 165 19871222 415
19870225 39 19871006 168 19871223 419
19870226 40 19871007 170 19871228 420
19870302 41 19871008 173 19871229 422
19870305 42 19871009 175 19871230 426
19870306 45 19871012 177 19880104 429
19870313 46 19871013 187 19880105 436
19870319 47 19871014 190 19880106 442
19870323 48 19871015 196 19880107 448
19870331 49 19871016 203 19880109 459
19870420 50 19871019 205 19880110 464

19870514 51 19871020 211 19880111 471
19870527 52 19871021 217 19880112 473
19870603 58 19871023 226 19880113 476
19870610 62 19871026 233 19880114 481
19870615 63 19871027 236 19880115 486
19870619 64 19871029 243 19880118 489
19870624 65 19871102 249 19880119 496
19870629 66 19871103 253 19880120 504
19870702 67 19871104 260 19880121 515
19870713 68 19871105 263 19RP0122 521
19870714 72 19871106 266 19880124 524
19870716 74 19871109 268 19880125 527
19870720 77 19871110 272 19880126 533
19870722 82 19871111 277 19880127 541
19870723 83 19871112 284 19880128 543
19870724 85 19871113 287 19880129 547
19870728 89 19dil Il 288 19880201 554
19870729 91 19871118 296 19880202 557
19870730 92 19871119 297 19880203 565
19870805 95 19871120 308 19880204 568
19870810 96 19871123 315 19880205 574

19870812 97 19871124 320 19880208 581
19870813 98 19871125 325 19880209 584
19870817 101 19871130 333 19880210 598

19870824 102 19871202 338 19880211 603
19870827 103 19871203 339 19880212 605

94

--- -- --

19880215 609 19880608 770
19880216 611
1988021A 621
198802io 623
19P3' 21 625
13.d0222 628
19880223 631
19880224 633
19880225 645
19880226 648
19880229 651
19880301 654
19880302 658
19880303 664
19880304 670
19880307 674
19880308 676
19880309 682
19880310 688
19880311 692
19880314 696
19880315 700
19880316 701
19880317 704
19880318 710
19880322 713

19830323 715
19880325 721
19880329 722
19880330 724
19880404 726
19880405 727
19880407 730
19880411 732
19880413 735
19880414 736
19880415 741
19880418 743
19880422 746
19880425 747
19880502 753
19880512 754
19880513 756
19880516 757
19880517 760
19880519 761
19880520 763
19880524 764
19880525 765
19880527 766
19880606 767
19880607 769

95

DATA SET #4 (Communications System)

19880328 4 19880627 121 19880829 367
10 ,80330 9 19880628 125 19880830 384

19880406 11 19880629 130 19880831 386

19880411 13 19880701 133 19880901 390
19880413 16 19880705 136 19880902 391
19880414 19 19880706 138 19880904 392
19880415 21 19880708 144 19880905 394

IQ 8 80418 22 19880709 145 19880906 402
19880419 24 19880711 148 19880907 410

19880420 25 19880712 149 19880908 414

19880421 28 19880713 156 19880909 421
19880422 30 19880714 160 19880910 423

19880426 31 19880715 162 19880911 428

19880427 36 19880719 173 19880912 438
19880429 39 19880720 177 19880913 441

19880501 40 19880721 187 198809)4 450

19¢80503 41 19880722 192 198809i5 461

19880504 42 19880723 196 19880916 474

19880505 45 19880724 197 19880917 483

19880506 47 19330725 204 19880919 494

19880509 50 19880726 213 19880920 498

19880510 56 19880727 217 19880921 506
19880512 57 19880728 224 19880922 521
19880516 58 19880729 227 19880923 526
19880517 59 19880801 228 19880926 531

19880518 60 19880802 233 19880927 539
19880519 62 19880803 237 19880928 549

19880524 63 19880804 239 19880929 554
19880526 66 19880805 241 19881002 555
1;880527 69 19880808 245 19881003 565

19880602 73 19880809 249 19881004 583
19880603 74 19880810 255 19881005 590

19880606 76 19880811 257 19881006 600
19880607 77 19880812 264 1988100' 615
19880608 81 19880813 266 19881008 616
19880609 83 19880815 269 19881010 621
19880610 85 19880816 273 19881011 626
19880613 86 19880817 284 19881012 643
19880614 91 19880818 294 19881013 647
19880615 92 19880819 297 19881014 659

19880616 93 19880820 307 19881015 661

19880617 94 19880821 309 19881017 663
19880618 96 19880822 318 19881018 668
19880620 99 19880823 322 19881019 674

19880621 104 19880824 328 19881020 680
19880622 108 19880825 335 19881021 688

19880623 110 19880826 343 19881024 692
19880624 112 19880827 354 19881023 693
19880625 115 19880828 361 19881024 704

96

19881025 710 15890129 1089
1)881026 722 19890130 1093
19881027 734 19890131 1100
19881028 740
19881029 742
19881031 765
19881101 767
19881102 775
19881205 776
19881206 789
19881207 794
1vi81208 799
19881209 815
19881212 824
19881213 841
19881214 846
19881215 857
19881216 860
19881217 862
19881218 863
198812:; 877
19881220 882
19881221 889
19881222 894
19881227 89e
19881228 904
19881230 905
19890103 909
19890104 920
19890105 931
19890106 938
19890107 947
19890108 948
19890109 959
19890110 968
19890111 986
19890112 991
19890113 1000
19890114 1002
19890116 1020
19890117 1027
19890118 1036
19890119 1046
19890120 1053
19890121 1054
19890122 1055
19890123 1058
19890124 1066
19890125 1074
19890126 1079
19890127 1085
19890128 1086

97

• - mm~m~mmmmm m m m m m m (mI

DATA SET #5 (Space System)

19860116 1 19861209 161 19870424 287

19860415 2 19861210 162 19870425 293

19860623 4 19861212 164 19870427 294

19860624 7 19861215 171 19870428 295

19860625 11 19861216 173 19870430 297

19860626 12 19861217 175 19870505 299

19860630 15 19861218 180 19870508 300

19860701 16 19861222 186 19870511 302

19860702 17 19861227 188 19870512 303

19860707 18 19861229 189 19870513 304

19860710 21 19861230 190 19870514 306

19860711 27 19861231 195 19870519 310

19860713 28 19870107 196 19F70520 311

19860714 31 19870108 199 19870521 313

19860715 36 19870109 206 19870527 314

19860716 41 19870112 210 19870529 319

19860717 50 19870113 212 19870530 320

19860718 51 19870114 215 19870602 322

19860721 55 19870115 225 10870603 323

19860722 59 19870116 226 19870605 327

19860723 63 19870117 229 19870606 328

19860724 67 19870119 231 19870609 330

19860725 66 19870120 235 19870610 332

19860726 72 19870121 236 19870611 334

19860728 74 19870122 237 19870615 335

19860729 78 19870123 242 19870616 336

19860730 79 19870127 246 19870617 341

19860731 80 19870128 248 19870618 343

19860801 81 19870129 249 19870619 344

19860812 84 19870130 253 19870622 346

19861106 85 19870202 256 19870624 349

19861107 86 19870204 261 19870625 354

19861110 89 19870206 262 19870629 361

19861112 90 19870210 263 19870630 362

19861117 92 19870225 264 19870701 364

19861118 94 19870227 265 19870702 374

19861119 96 19870303 266 19870703 376

19861120 99 19870310 268 19870706 380

19861121 100 19870320 269 19870707 382

19861124 121 19870323 271 19870708 384

19861125 127 19870327 272 19870709 394

19861126 129 19870328 273 19870710 402

19861201 133 19870330 274 19870713 415

19861202 136 19870401 275 19870714 418

19861203 139 19870414 276 19870715 419

19861204 145 19870415 277 19870716 422

19861205 146 19870417 278 19870717 424

19861207 149 19870418 280 19870720 425

19861208 153 19870421 286 19870721 427

98

19870722 428 19880106 552 19880325 696
19870724 429 19880107 553 19880328 698
19870727 430 19880108 554 19880329 700
19870812 432 19880109 555 19880330 701
19870813 433 19880110 556 19880331 702
19870815 434 19880112 558 19880402 703
19870825 435 19880113 560 19880404 705
19870904 436 19880114 561 19880405 710
19870910 438 19880115 564 19880407 716
19870917 441 19880116 567 19880408 722
19870918 446 19880117 568 19880410 723
19870921 447 19880119 570 19880411 731
19870922 455 19880122 575 19880412 733
19870923 456 19880125 577 19880413 740
19870923 460 19880126 578 19880414 744
19870928 462 19880127 579 19880415 747
19870929 466 19880128 581 19880418 752
19870930 470 19880129 582 19880419 755
19871001 471 19880130 585 19880420 757
19871005 473 19880201 588 19880422 759
19871006 476 19880202 589 19880423 764
19871007 479 19880203 591 19880424 765
19871009 481 19880204 592 19880425 772
19871016 482 19880205 593 19880426 782
19871019 486 19880208 596 19880427 796
19871026 488 19880211 598 19880428 799
19871027 489 19880212 600 19880429 801
19871028 490 19880216 602 19880430 802
19871029 494 19880217 607 19880502 808
19871031 495 19880218 610 19880503 816
19871103 497 19880219 613 19880504 821
19871109 503 19880222 614 19880505 827
19871111 511 19880223 620 19880506 829
19871113 516 19880224 625 19880507 831
19871117 520 19880225 628 19880508 833
19871122 521 19880226 629 19880509 837
19871125 523 19880301 631 19880510 850
19871130 527 19880302 633 19880511 860
19871201 531 19880303 636 19880512 863

19871207 532 19880308 643 19880513 864
19871208 533 19880309 646 19880514 865
19871210 534 19880311 649 19880516 871
19871215 535 19880312 650 19880517 875
19871216 537 19880314 672 19880518 879
19871217 541 19880315 674 19880520 886
19871219 542 19880316 676 19880521 888
19871221 543 19880317 677 19880523 889
19871222 544 19880318 678 19880524 896
19871230 545 19880321 683 19880525 903
19871231 546 19880322 687 19880526 908
19880104 550 19880323 689 19880527 909
19880105 551 19880324 692 19880530 913

99

19880531 918 19880825 1071 19881118 1221

19880601 923 19880831 1075

19880602 925 19880901 1076
19880607 926 19880902 1078
19880608 933 19880905 1086
19880609 937 19880906 1088
19880610 943 19880907 1090
19880611 948 19880908 1091
19880613 951 19880912 1092
19880614 953 19880913 1093
19880615 956 19880914 1094
19880616 958 19880915 1095
19880617 962 19880916 1098
19880618 964 19880918 1099
19880620 966 19880919 1100
19880621 968 19880921 1101
19880622 971 19880922 1103
19880623 976 19880924 1104
19880624 984 19880927 1109

19880627 986 19880928 1111

19880628 990 19880929 1119

19880629 991 19880930 1123
19880630 996 19881003 1126
19880701 998 19881005 1127

19880705 1000 19881006 1128
19880706 1003 19881007 1130

19880707 1005 19881011 1.141
19880708 1013 19881013 1145

19880710 1014 19881014 1146
19880711 1016 19881017 1147
19880712 1020 19881018 1151

19880713 1022 19881020 1154
19880715 1024 19881021 1162
19880717 1025 19881022 1163

19880718 1029 19881023 1164
19880719 1030 19881024 1168
19880720 1033 19881025 1169
19880721 1034 19881026 1173
19880722 1035 19881027 1179
19880724 1039 19881028 1182
19880725 1042 19881029 1185

19880726 1044 19881101 1186
19880727 1049 19881102 1187

19880802 1050 19881103 1190
19880804 1053 19881104 1193

19880805 1057 19881107 1196
19880809 1058 19881108 1199

19880810 1061 19881110 1200
19880815 1063 19881114 1204
19880816 1064 19881115 1210
19880817 1066 19881116 1213
19880818 1070 19881117 1218

100

DATA SET #6 (Space System)

19870112 1 19880114 73 19880724 131
19870409 2 19880115 74 19880726 135
19870902 4 19880117 75 19880729 137
19870920 5 19880125 76 19880805 138
19870922 6 19880215 77 19880817 139

19870924 7 19880217 79 19880823 140
19870925 9 19880222 80 19880826 143

19870926 10 19880227 81 19880831 144
19870930 11 19880229 82 19880902 145

19871001 13 19880301 83 19880911 146
19871007 14 19880307 84 19880928 147

19871008 15 19880309 85 19881009 148
19871012 16 19880315 86 1988122 159

19871013 17 19880320 87 19881026 160
19871015 18 19880322 90 19881029 161
19871016 19 19880323 91 19881120 163
19871017 21 19880325 92 19881123 164
19871020 24 19880331 93 19881130 165

19871022 26 19880404 94 19881215 166
19871023 29 19880406 95
19871025 30 19880408 97
19871028 33 19880411 98
19871030 34 19880418 99
19871102 36 19880418 100
19871107 37 19880419 101
19871109 38 19880421 102
19871110 39 19880425 106
19871111 40 19880426 107
19871112 41 19880427 108
19871113 42 19880428 109

19871114 44 19880504 110
19871115 45 19880506 112
19871117 46 19880508 113
19871120 47 19880510 114
19871122 48 19880511 116
19871125 49 19880516 117
19871128 50 19880521 118
19871207 54 19880523 119
19871208 56 19880602 120
19871209 60 19880605 121
19871211 63 19880609 123
19871214 65 19880611 124
19871216 67 19880614 125
19871217 68 19880625 126
19871222 69 19880628 127
19871224 70 19880629 128
19880104 71 19880630 129
19880109 72 19880711 130

101

Bibliography

1. Abdel-Ghaly, Adballa A. and others. "Evaluation of
Competing Software Reliability Predictions," IEEE
Transactions on Software Engineering. 12: 950-967
(September 1986).

2. Air Force Systems Command. Software Quality
Indicators. AFSCP 800-14. Andrews AFB MD: HQ APSC,
20 January 1987.

3. Air Force Systems Command. Software Management
Indicators. AFSCP 800-43. Andrews AFB MD: HQ AFSC,
31 January 1986.

4. Andrews, Richard A. Class handout distributed in
LOG 225, Acquisition Logistics. School of Systems
and Logistics, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, January 1986.

5. Boehm, Barry W. Software EngineerinK Economics.
Englewood Cliffs NJ: Prentice-Hall, Inc, 1981.

6. Boeing Aerospace Corporation. "Critical Item
Development Specification for Avionics Computer
Controller." No. S400-l00-21B. Boeing Aerospace
Corporation, Seattle WA, 11 March 1983.

7. Boorman, Scott A. and Paul R. Levitt. "Software
Warfare and Algorithm Sabotage," Signal: The
International Journal of C31, 42: 75-78 (May 1988).

8. Brocka, Bruce. "An Alternative Paradigm for Software
Reliability," Reliability Review, 7: 28-29 (June 1987).

9. Department of the Air Force. Acquisition Management:
Air Force Reliability and Maintainability Policy.
AFR 800-18. Washington: HQ USAF, 1 October 1986.

10. Department of the Air Force. USAF R&M 2000 Process
AFP 800-7. Washington: HQ USAF, I October 1988.

11. Department of Defense. Military Standard: Reliability
Modeling and Prediction. MIL-STD 756B. Washington:
Government Printing Office, 18 November 1981.

12. Department of Defense. Military Standard: Defense
Systems Software Development. DOD-STD-2167A.
Washington: Government Printing Office,
29 February 1988.

102

13. Department of Defense. Military Standard: Defense
Systems Software Quality Program. DOD-STD-2168.
Washington: Government Printing Office, 29 April 1988.

14. Dhillon, B. S. and Chanan Singh. Engineering
Reliability. New York: John Wiley & Sons, Inc., 1981.

15. Dunham, Janet R. "Experiments in Software Reliability:
Life Critical Applications," IEEE Transactions on
Software Reliability, SE-12: 110-123 (January 1986).

16. Ferens, Daniel V. "Computer Software Reliability
Prediction," Proceedings of the IEEE National Aerospace
and Electronics Conference (NAECON): 713-717 (1986).

17. . "Computer Software Fault Tolerance,"
Proceedings of the IEEE National Aerospace and
Electronics Conference (NAECON): 845-349 (1987).

18. Glass, Robert L. and Ronald A. Noiseux. Software
Maintenance Guidebook. Englewood Cliffs NJ: Prentice-
Hall, Inc., 1981.

19. Goel, Amrit L. "Software Reliability Models:
Assumptions, Limitations, and Applicability," IEEE
Transactions on Software Engineering, SE-lI: 1411-1423
(December 1985).

20. Goldstine, Herman H. The Computer: From Pascal to
von Neumann. Princeton: Princeton University Press,
1972.

21. Halpin, John C. "R&M 2000 Changes Customer Priorities
in Avionics Design," EW Design Engineer's Handbook:
Supplement to the Journal of Electronic Defence:
5.1-5.3 (December 1987).

22. Hubbard, Col Clarke D., Director of Logistics. Personal
Correspondence. HQ AFOTEC/LG, Kirtland AFB NM, 15 March
1989.

23. Kvalseth, Tarald 0. "Cautionary Note About R
The American Statistician, 39: 279-285 (November 1985).

24. Lewis, E. E. Introduction to Reliability Engineering.
New York: John Wiley & Sons, Inc., 1987.

25. Lipow, Myron and Erwin Book. "Implications of R&M 2000
on Software," IEEE Transactions on Reliability. R-36:
355-361 (August 1987).

103

26. McCarthy, Joseph. "A Software Approach," Program
Manager, 13: 41-44 (May-June 1984).

27. McPherson, Michael R. and others. "Predicting System
Reliability: Software and Hardware," Unpublished
paper. HQ AFOTEC/LG5, Kirtland AFB NM, November 1988.

28. McPherson, Michael R., Captain USAF. Telephone
interview. HQ APOTEC/LG5, Kirtland AFB NM,
25 May 1989.

29. Mendenhall, William and Terry Sincich. Statistics for
khe Engineer and Computer Sciences. San Francisco:

Dellen Publishing Company, 1984.

30. Moreau, R. The Computer Comes of Age: The People.
the Hardware, and the Software. London: MIT Press,
1984.

31. Mullins, General James P. "Reliability: Key to Cost
Reduction," Program Manager, 13: 12-16, (September-
October 1984).

32. Musa, John D. and others. Software Reliability:
Measurement, Prediction. Application. New York:
McGraw-Hill Book Company, 1987.

33. Ott, Lyman. An Introduction to Statistical Methods and
Data Analysis (Third Edition). Boston: PWS-Kent
Publishing Company, 1988.

34. SAS Institute Inc. SAS User's Guide: Statistics
(Fifth Edition). Cary NC: SAS Institute Inc.,1985.

35. Shooman, Martin L. Software Engineering: Design,
Reliability, and Management. New York: McGraw-Hill
Book Company, 1983.

36. Yamada, Shigeru and Shunji Osaki. "Software
Reliability Growth Modeling: Models and Application,
IEEE Transactions on Software Engineering, 7: 1431-
1437 (December 1985).

104

I

Captain Charles J. Westgate, III

entered Virginia

Polytechnic Institute and State
University. He graduated in

1984 with the degree of Bachelor
of Science in Aerospace and

Ocean Engineering, and was commissioned
as a Second Lieutenant

in the United States Air Force. After graduation, he was

assigned to the Air Force Acquisition
Logistics Center (AFALC)

as an Integrated Logistics Support
Manager, until entering the

School of Systems and Logistics, Air Force Institute of

Technology (AFIT), in May 1988. While attending AFIT, Capt

Westgate has also completed a Master of Science Degree in

Management Science at the University
of Dayton in August 1988,

and became a Certified Professional
Logistician (CPL) in May

1989.

105

UNCLASS IFILED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE OM o. 070pr 0188

Is. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION ALTHORITY1 3, DISTRIBUTION /AVAILABILITY OF REPORT

2b. ECLSSIICATON DOWGRADNG CHEULEApproved for public release; distribution
Zb. ECLASL~IATIO / DWNGRDINGSCHEULEunl im ited

&. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GLM/LSY/89S-7 1

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Systems and (if applicable)

Logistics I AFIT/LSM_______________________

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

Air Force Institute of Technology (AU)
Wright-Patterson AFB, Ohio 45433-6583

8.. NAME OF FUNOING/SPONSOR)NG J8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j(if applicable)

Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM IPROJELT TASK IWORK UNIT
ELEMENT NO. INO. NO IACCESSION NO

11. TITLE (include Security Classification)

VALIDATION OF AN EXPONENTIALLY DECREASING FAILURE RATE SOFTWARE RELIABILITY MODEL

12. PERSONAL AUTHOR(S)
Charles J. Westgate, III, M.S., Capt, USAF

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT 'Year, Month, Day) jiS.PAGE COUNT
MS Thesis IFROM _____TO - 1989 September 118

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on~ reverse if necessary and identify by bNock number)
FIELD GROUP SUB-GROUP Computer Program Reliability; Reliability;
12__________0_______ Computer Programs; Mathematical Models

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Daniel V. Ferens
Associate Professor
Department of Systems Management

Appr,ed for ~lic r.ease: IAW AFR 190-1.

LNR . EMMEHANZLt C 1 USAF 11 Oct 89
Director of Research and Consultation
Air Force Institute of Technology (AU)
Wright-Patterson AFB OH 45433-6583

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
Q3UNCLASSI FIE D/'UNLI MITE D 0 SAME AS RPT. C3 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Daniel V. Fereps, Associate Professor (513) 255-3355 1LSM

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

UNCLASSIFIED

The purpose of this thesis was to determine the validity
of a software reliability estimation model proposed by the
Air Force Operational Test and Evaluation Center (AFOTEC).
During the last forty years of the ccmputer era, the demand
for software has been growing at a rate of twelve percent per
year and about fifty percent of the total life cycle cost of
a software system is attributed to software maintenance. It
has also been shown that the cost of fixing a software fault
increases dramatically as the life cycle progresses. It was
statistics like those discussed above that prompted this
research.

The research had these specific objectives: the first was
ascertaining the soundness of the model's intrinsic logic.
The second objective was to run the model with actual failure
data to measure the validity and correlation of the data with
the model. The final objective was to determine the
assumptions required to operate the model.

The study found the AFOTEC Model to be invalid; however,
improvements and assumptions could be easily applied to make
the model a valid tool for estimating software reliability.
Two improvements were proposed for the AFOTEC Model. First,
the model should operate with the assumption that the data
used in the model should be data obtained after software
testing has reached a steady state. The second recommendation
was to modify the AFOTEC Model to emulate both the start-up
phase and the steady state phase of testing.

UNCLASSIFIED

